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Abstract

Gestures are integral components of face-to-face com-
munication. They unfold over time, often following pre-
dictable movement phases of preparation, stroke, and re-
traction. Yet, the prevalent approach to automatic gesture
detection treats the problem as binary classification, classi-
fying a segment as either containing a gesture or not, thus
failing to capture its inherently sequential and contextual
nature. To address this, we introduce a novel framework
that reframes the task as a multi-phase sequence labeling
problem rather than binary classification. Our model pro-
cesses sequences of skeletal movements over time windows,
uses Transformer encoders to learn contextual embeddings,
and leverages Conditional Random Fields to perform se-
quence labeling. We evaluate our proposal on a large
dataset of diverse co-speech gestures in task-oriented face-
to-face dialogues. The results consistently demonstrate that
our method significantly outperforms strong baseline mod-
els in detecting gesture strokes. Furthermore, applying
Transformer encoders to learn contextual embeddings from
movement sequences substantially improves gesture unit de-
tection. These results highlight our framework’s capacity
to capture the fine-grained dynamics of co-speech gesture
phases, paving the way for more nuanced and accurate ges-
ture detection and analysis.

1. Introduction
Gestures are inherent ingredients of face-to-face com-

munication that serve many functions, such as illustrating
objects or actions, emphasizing verbal expression, or indi-
cating direction [13]. Gesture analysis is a key research area
in human-computer interaction, sign language recognition,
and behavior analysis, where sensory data gathered through

Neutral Preparation Stroke Retraction Neutral

Gesture Unit

Figure 1. A gesture unit consists of sequential gestural phases.
Figure adapted from Sanchez et al. [17].

motion capture or glove-based sensors can be leveraged [4].
Despite the accuracy of these technologies, wearing sen-
sors may be considered intrusive by users. Consequently,
passive sensors such as RGB or depth cameras have been
widely adopted for gesture analysis. Using data gathered
through such passive sensors, vision-based gesture detec-
tion and recognition models are currently the most domi-
nant in the field [1, 10, 14, 24]. Recent studies, however,
have two main limitations. First, widespread gesture de-
tection methods, such as classification techniques, often ap-
ply a binary approach, e.g., classifying each video frame or
segment as either gestural or non-gestural [10,14,24]. They
therefore do not exploit the fact that gestures consist of dif-
ferent phases, typically including preparation, stroke, and
retraction, as illustrated in Figure 1. Second, the predomi-
nant body of literature focuses on analyzing a limited range
of isolated gestures in controlled conditions, often depicting
discrete actions or objects [1, 14]. However, in actual com-
municative situations, gestures are used dynamically as part
of face-to-face conversation. This research aims to address
these two limitations by emphasizing gestures’ complex and
sequential nature, focusing on detecting co-speech gestures
in naturalistic, conversational data.

Gestures are not abrupt events; instead, they unfold over
time, often following a predictable pattern of phases. As
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characterized by Kendon [7], when a person gestures, cer-
tain body parts undertake a “movement excursion.” This
excursion, depicted in Figure 1, begins when the gesturing
body parts depart from a rest position and ends when they
return to it. This process is considered a gesture unit, com-
posed of well-defined movement patterns. Within this unit,
we can distinguish one or more phases [7]. The preparation
phase leads up to the stroke—the most meaning-bearing
part of the gesture—, while the retraction phase follows it,
signaling the completion of the gesture unit.

We argue that a fine-grained labeling approach is needed
to exploit the patterned structure of gestures, an alternative
to binary classification.

This perspective is inspired by sequence labeling strate-
gies employed in Natural Language Processing [6], where
we may need to identify the span of a given subsequence of
interest (e.g., a named entity such as “Palace of Westmin-
ster”) within a text [22]. Similarly, we propose to concep-
tualize gesture detection as a segmentation task requiring
sequential modeling of gesture phases. This can be effi-
ciently achieved using a multi-phase sequence labeling ap-
proach that tracks the lifecycle of each gesture, beginning
from an initial neutral position, transitioning into prepara-
tion, followed by the execution of the stroke, retraction, and
finally returning to the neutral state of rest once again.

To the best of our knowledge, such a multi-phase se-
quence labeling approach has not been employed in pre-
vious work on gesture detection. Its introduction for ges-
ture detection represents a change in how we operationalize
and model gestures computationally. Moreover, sequence-
based labeling is particularly suited for powerful models
such as Transformers [21] and learning algorithms such as
Conditional Random Fields (CRFs) [11]. To operationalize
gesture detection as a sequence labeling task, we present a
framework that utilizes a series of time-stamped windows,
each representing skeletal movements as spatio-temporal
graphs. Spatio-Temporal Graph Convolutional Networks
[5, 23] are used to embed the bodily movements of each
time window, capturing the spatio-temporal dynamics of the
bodily movements in a short window. Subsequently, em-
beddings are fed into Transformer encoders [21], encoding
the longer temporal dependencies across the sequence. We
use CRFs for structured prediction, thereby exploiting the
labels’ sequential dependencies in the gestural unit.

In short, these are our key contributions and findings:
• We introduce a novel framework operationalizing gesture

detection as multi-phase sequence labeling, using Trans-
formers and CRFs, as detailed in Section 4.

• Our study presents in-depth experimental results and
evaluations conducted on a rich dataset of co-speech ges-
tures from 38 individuals in face-to-face communication.
This dataset, comprising 16 hours of recorded naturalistic
dialogue, goes beyond conventional categorical gestures,

as introduced in Section 3.1. All data and corresponding
code have been made accessible on GitHub.1

• Our multi-phase sequence labeling approach to gesture
detection consistently outperforms traditional binary and
multiclass classification methods, as evidenced by the re-
sults presented in Section 6 and analyzed in Section 7.

2. Related Work
Data Modeling in Gesture Analysis Current gesture
analysis approaches frequently employ deep learning mod-
els for feature representation of raw RGB or depth data,
as well as for gesture detection and classification. A pi-
oneering approach by Molchanov et al. [14] uses a 3D-
Convolutional Neural Network (CNN) on depth and RGB
data and incorporates Connectionist Temporal Classifica-
tion (CTC) to predict an “in progress” gesture from video
segments. Typically, the class content of these segments
features a “silent gesture that depicts an action or an ob-
ject”. Köpüklü et al. [10] took a different path, using
RGB video data first to decide if a segment contains a ges-
ture (gesture detection). If confirmed, a 3D-CNN is subse-
quently employed to classify the gesture content within the
segment (gesture recognition).

Recent advancements in pose and keypoint estimation
techniques have also enabled precise measurement and
tracking of human body positions and 2D and 3D locations
of body joints [18]. This provides a feasible alternative
to sensor-based point estimation. As such, keypoint-based
models have been employed for gesture analysis in recent
studies [12], showing notable success in domains such as
sign language recognition [5]. For instance, Jiang et al. [5]
proposed a multimodal approach for this domain, incorpo-
rating RGB, depth, and keypoint-based models. The study,
notably, deployed Graph Convolutional Networks (GCNs)
with keypoint-based models displaying the highest perfor-
mance, resulting in the highest recognition rates. Inspired
by Jiang et al., our work utilizes GCNs on spatio-temporal
graphs constructed using sequences of estimated key points.

Gesture Detection Gesture detection approaches pre-
dominantly fall into two primary categories. The first fam-
ily of approaches treats gesture detection as a preprocessing
phase before gesture recognition, e.g., by leveraging binary
classification, [9, 10], and gesture boundary detection [24].
For example, Zhu et al. [24] proposed 3D-Residual CNNs
and Recurrent Neural Networks for gesture boundary detec-
tion. Binary approaches are also common in sign language
recognition. Kong and Ranganath’s work [9] exemplifies
this, proposing a model that segments sign language se-
quences into two categories: SIGN and Movement Epenthe-

1https://anonymous.4open.science/r/co_speech_
gesture_detection-33F6/

https://anonymous.4open.science/r/co_speech_gesture_detection-33F6/
https://anonymous.4open.science/r/co_speech_gesture_detection-33F6/


Figure 2. Data collection setup: Two participants play a referential
game, freely communicating using speech and gestures.

sis, facilitated by Bayesian Networks. The segmented SIGN
subsegments are subsequently amalgamated, and a combi-
nation of CRFs and Support Vector Machines are employed.
It is important to note that while this methodology deploys
sequence labeling, the labeling scheme is binary.

The second set of approaches integrates gesture detec-
tion within the gesture recognition task [14, 15, 19]. This
procedure is made possible due to the fixed target number
of gestures, with non-gestural movements designated as a
“background” class. For instance, Molchanov et al. [14] ap-
plied CTC to categorize gesture classes, including the “no
gesture” class. Another noteworthy example is the early
work of Morency et al. [15] in 2007, which utilized Latent-
Dynamic(LD)-CRFs to learn intra- and inter-class dynam-
ics for gesture recognition. The study proposed sequen-
tial labeling for the recognition of fixed-sized gestures and
“background” movements with LD-CRFs. However, de-
spite applying sequential labeling in gesture analysis, this
work diverges from ours in several ways. First, its empha-
sis was primarily on gesture recognition; secondly, it did
not take into account any sequential phases within gestu-
ral units, instead focusing on learning intra-class dynamics
over gesture unit’s dynamics; and finally, it utilized rela-
tively simple hand-crafted features, as was the norm at the
time.

3. Data and Preprocessing
This section gives an overview of the dataset used in our

study, detailing the preprocessing steps to convert data from
video recordings into a sequential format.

3.1. Dataset

Several gesture datasets are available, typically compris-
ing short video clips illustrating silent gestures associated
with specific actions or objects [1, 14]. The present study
goes beyond identifying a limited set of gestures and instead
addresses the more challenging task of co-speech gesture
detection in naturalistic communication. In particular, we
leverage a dataset created by Rasenberg et al. [16], which
contains 19 face-to-face task-oriented dialogues by 38 dif-

ferent subjects over 16 hours of footage. In this dataset,
speakers participate in a referential game, where one partic-
ipant describes a novel object (i.e., a 3D object without a
conventional name) while the other participant tries to find
it among 16 candidates displayed on a screen, using any
means of communication they may want to employ. This
task design elicited not only speech but also spontaneous
gestures, particularly iconic or referential co-speech ges-
tures, as the participants conceptualize the novel object un-
der discussion [2, 16]. Figure 2 shows the setup of the data
collection, where videos were recorded from different an-
gles for each participant. We use recordings from cameras
positioned to the side, which result in semi-frontal views of
each speaker.

Each gesture stroke was manually identified and seg-
mented, and the process was carried out with high relia-
bility. For instance, there was an inter-annotator agreement
rate of 89.2% on gesture identification [16]. This makes
this dataset a perfect choice for our study, since it allows us
to exploit the stroke annotations to devise sequence labels,
as we explain in Section 3.2. The dataset consists of 6106
gestural strokes with average and median durations of 0.58
and 0.42 seconds, respectively. Additional details on the
annotated gesture strokes are provided in Section 1 of the
Supplementary Materials, and comprehensive descriptions
and detailed studies on the nature of the collected data are
described by Eijk et al. [2].

While the entire dataset is not fully public due to privacy
reasons and the current data-sharing policies of the Euro-
pean Union, we make available the estimated body poses
obtained via MMPose [18] (more details in Section 3.3) to
enable the reproducibility of our results.

3.2. Constructing Multi-Phase Sequential Data

Using the videos of each participant, we apply a sliding
time window approach to generate sequential data. Each
time window comprises 18 frames, reflecting the average
gesture stroke duration of 0.58 seconds at a frame rate of
29.97 fps. Each time window is shifted with an offset of 2
frames. For example, a time window begins at frame 0 and
ends at frame 18, the subsequent one begins at frame 2 and
ends at frame 20, and this pattern continues. Next, we group
these overlapping time windows into non-overlapping se-
quences. Each sequence in our experimental design con-
tains 40 time windows. To illustrate, let us consider the first
sequence. This sequence will start with the first time win-
dow (0-18) and include up to the 40th time window. Given
the 2-frame shift in our sliding window approach, by the
time we get to the 40th window, we would have covered 80
frames (40 windows × 2 frame shift per window).

Taking as anchor the stroke annotations and building on
cognitive science research regarding gestural phases [7] il-
lustrated in Figure 1, we label each time window as follows:



Figure 3. A spatio-temporal graph is extracted from the estimated
upper body pose [18], adapted from Jiang et al. [5].

• Time windows that overlap with the start of a manu-
ally annotated stroke for less than 50% (from the left)
are labeled as P. Theoretically, this corresponds to the
Preparation phase, i.e., the transition from a rest position
to the most meaningful part of the gesture.

• Time windows that overlap more than 50% with a manu-
ally annotated stroke are labeled as S. They are intended
to capture the Stroke phase, where the semantic content
of the gesture is typically expressed.

• Time windows that overlap with the end of a manu-
ally annotated stroke for less than 50% (from the right)
are labeled as R. Theoretically, this corresponds to the
Retraction phase, consisting of movements that guide the
hands back to a rest position.

• Time windows that do not overlap with a manually an-
notated stroke are labeled as N, representing the Neutral
phases between gestural units (i.e. the rest positions).

This procedure results in the following set of labels:
C = {P,S,R,N}. Note that using the sliding window ap-
proach described above, each time window can only have
one label. Given the nature of the dataset (where each video
corresponds to a full spontaneous dialogue), this results in
a highly skewed distribution of labels, as shown in Table 1.
The dominant label is Neutral, representing time windows
that do not intersect with any stroke. This is a predictable
outcome given the naturalistic character of the dialogues,
which contain substantial periods without gestures. In addi-
tion, there are more stroke samples than boundary samples
due to the sliding window’s two-frame shift. Given that the
average stroke duration is similar to the sliding window’s
length, there are instances where an entire time window
overlaps with a coded stroke.

Label # Samples Percentage

P: Preparation 19103 2.3 %
S: Stroke 51325 6.0 %
R: Retraction 19212 2.3 %
N: Neutral 759000 89.4 %

Table 1. Label distribution over the entire dataset.

3.3. Representing Time Windows

Our method uses upper body skeletal movements from
key point estimation generated by applying pose estimation
techniques to visual data. Specifically, we used MMPose
to extract body joints from the RGB frames [18], which
results in the extraction of 133 body joints. Since our
study focuses on manual gesture detection (i.e. movements
of hands and arms), we only consider the upper body key
points. We follow the approach proposed by Jiang et al. [5]
for sign language recognition, which involves constructing
a Spatio-Temporal (ST)-Graph from 27 upper body joints.
ST-Graphs allow us to represent body movement as a se-
quence of body joints, spatially and temporally, as illus-
trated in Figure 3. A graph is a data structure consisting
of nodes (vertices) and edges connecting the nodes. In our
study, each node carries information about a body joint: the
x and y joint positions (in the Cartesian coordinates) and
their detection confidence level. As shown in Figure 3, the
edges in ST-graphs are of two types: spatial edges connect-
ing naturally linked joints and temporal edges connecting
identical joints across different frames.

4. Sequence Labeling for Gesture Detection
As mentioned in previous sections, this study proposes a

framework for gesture detection conceptualized as a multi-
phase sequence labeling task, employing the gesture phase
labels described in Section 3.2. Here we define the problem
formally, present the architecture of our proposed model,
and provide details on baseline models and ablations.

4.1. Problem Definition

Each data point can be denoted as a sequence pair:
(x(1:t),y(1:t)), where x(t) represents the time window lo-
cated at position t and y(t) the corresponding label for that
time window. In our study, the input sequence, x(1:t), of
the body movement time windows is represented as an ST-
Graph, and the labels, y(1:t), correspond to the different ges-
ture phases, where y(t) is drawn from the set of discrete la-
bels C = {P,S,R,N}.

Thus, given an input sequence denoted by x(1:t), the se-
quence labeling’s objective is to predict the joint conditional
distribution, represented by y(1:t). As explained in the next
sub-section, to leverage the inherent structure of the out-
put sequence, we adopt linear-chain Conditional Random
Fields (CRFs), a technique well-suited to exploit the tem-
poral gesture phases in the output sequence while predict-
ing the label at a given position i. The linearity of this
model plays a crucial role, given that we are dealing with se-
quential data. It conditions only on the preceding transition
of the hidden states. In other words, the joint conditional
distribution of the sequence depends on both the observed
states (i.e., the embeddings of the time windows—more de-



tails in the next sub-section) and the adjacent predictions of
the hidden states (i.e., the phases). Mathematically, this can
be represented as:

P(y(1:t)|x(1:t)) =
t

∏
i=1

P(y(i)|x(1:t),y(i−1)). (1)

Transformer-based Sequence Encoding: 

Sequence Labeling Through CRFs: 

Position wise FCNNs: 

Embedding Time Windows via ST-GCNs: 

...

Figure 4. The architecture of the multi-phase sequence labeler
consisting of the model components described in Section 4.2.

4.2. Model Architecture

Our proposed model is illustrated by the diagram in Fig-
ure 4. It employs Spatio-Temporal Graph Convolutional
Networks (ST-GCNs) to embed the sequences of time win-
dows. A Transformer encoder is then used to learn contex-
tualized embeddings. This is followed by position-wise pre-
diction through fully connected neural networks (FCNNs).
Lastly, Conditional Random Fields (CRFs) are applied to
leverage sequence labeling on the model’s predictions.

Embedding Time Windows via ST-GCNs ST-GCNs, a
type of Graph Neural Networks, effectively handle data
types such as skeletal key points embedded in graphs, by
extending the convolution operation of traditional CNNs to
graph-structured data [8, 23]. Our research uses these net-
works to process spatio-temporal data represented by skele-
tal movements in ST graphs. ST-GCNs capture the move-
ment patterns within the joint sequences through the lay-
ered representations of deep neural networks. They apply
the convolution operation on each node in the spatial graph
with a c-dimensional vector input feature map, represented
by the joint position and detection confidence. As depicted

x(1) x(2) x(3) x(4) x(5) x(6) x(7)

N N P S S R N

Figure 5. Illustration of a linear chain CRFs for a sequence of 7
states, i.e., gesture phases. Each observed input x(i) represents a
segment of the video and each state y(i) corresponds to the phase of
that segment. The arrows represent the dependencies between the
observations and the states and between the states in a sequence.

in Figure 4, this step embeds a sequence of time windows
as follows: e(1:t) = GCNs(x(1:t)). Further details on ST-
GCNs, such as their convolutional operations, model layers,
and their dimensions, are provided in Section 2 of the sup-
plementary materials. A comprehensive description can be
found in the seminal work on ST-GCNs by Yan et al. [23].

Transformer-based Sequence Encoding The Trans-
former is a neural network architecture with an encoder-
decoder structure, known for its state-of-the-art perfor-
mance in numerous Natural Language Processing and vi-
sion tasks [21]. In our research, we specifically lever-
age the encoder component of the Transformer, applying
it to sequences of body-joint embeddings. The encoder
comprises a multi-head self attention (MHSA) layer fol-
lowed by position-wise FNNs. We use 4 stacked layers
in our architecture. Our system operates by feeding se-
quences of time-window embeddings into the encoder, re-
sulting in contextualized embeddings denoted by u(1:t) =
TransformerEncoder(e(1:t)). The MHSA layer enhances
the model’s ability to learn diverse representations at dif-
ferent positions from multiple subspaces.

Position-wise Prediction Layers After completing the
encoder operations, two additional layers of FCNNs further
process each time window’s contextual embeddings. The
final output layer serves as the prediction layer.

Structured Prediction via CRFs CRFs are powerful
probabilistic models utilized to leverage dependencies be-
tween successive labels [11]. Figure 5 illustrates the de-
pendencies between gestural phases. For a given sequence
label, y(1:t), and a set of all possible sequences, Ys, the con-
ditional probability of y(1:t) is:

P(y(1:t)|Ys) =
exp

(
∑

t
i=1 f (y(i−1),y(i),s)

)
∑ŷ∈Ys exp

(
∑

t
i=1 f (ŷ(i−1), ŷ(i),s)

) (2)

where f (y(i−1),y(i),s) represents the transition score from
y(i−1) to y(i), and the score of y(i) (i.e., the emissions com-
ing from the prediction layer) for a given sequence s. The



goal is to optimize the true sequence of labels against the
complete set of potential label sequences by maximizing
the conditional probability in Equation 2. For inferring a
sequence (in the prediction step), we solve a combinatorial
search problem based on the Viterbi algorithm [3], which
identifies the sequence path with the highest cumulative
probability.

4.3. Baselines and Ablations

To demonstrate the potential of our multi-phase se-
quence labeling framework, we compare it against strong
baselines. The comparison concerns two dimensions: (1)
the coarseness of the labeling scheme (multi-phase as in
our approach vs. binary) and (2) the type of prediction (se-
quence labeling via CRF vs. classification).

In the binary approach, we simplify the labeling pro-
cess by focusing on stroke detection. This strategy aligns
with previous research, such as [10, 14, 15, 24], where the
main interest lies in identifying the gesture stroke in a bi-
nary manner. Time windows that overlap more than 50%
with a manually coded stroke are labeled as S, while any
other time window is labeled as O for Other. Hence, in a
binary model, y is drawn from the set C = {S,O}.

In the classification approach, instead of applying se-
quence labeling via CRFs, we directly apply a classifier
on the embeddings of each time window. In other words,
the classifier separately operates on each position’s embed-
dings. As a result, for predicting the labels of the en-
tire sequence (regardless of whether they are drawn from
{P,S,R,N} or {S,O}), we compute the mode of the joint
probability distribution, P(y(1:t)|x(1:t)), for each position
independently: P(y(1:t)|x(1:t)) = ∏

t
i=1 P(y(i)|x(1:l)). The

optimization of the classifier can be achieved by minimizing
the negative log-likelihood.

In addition to comparing models that differ along these
two dimensions, we carry out an ablation on all models to
examine the impact of the Transformer encoder.

5. Experimental Setup
Implementation Details We train all our models with the
same set of hyperparameters, which were identified through
a process of random search. We use stochastic gradient de-
scent with 0.1 base learning rate and an L2-regularization
term with weight 10−4 to update models’ weights. We in-
crease the learning rate linearly for the first 20 epochs and
divide it by 10 at the 50th epoch. We train models for 80
epochs using 8 Nvidia A100 video cards with a batch size
of 256, which was enough for the models to converge. Due
to the imbalance in class distributions (see Table 1), we use
only a subset of available data during each epoch. Namely,
while training, we take all elements with at least one ges-
tural phase and subsample the same number of elements
from the set of elements that do not contain gesture phases.

Approach Multi-phase TE F1 Precision Recall IoU

Classification

✗ ✗ 40.3 ± 5.0 58.7 ± 2.6 30.9 ± 5.1 25.3 ± 3.8
✗ ✓ 48.2 ± 3.1 53.1 ± 2.6 44.3 ± 4.2 31.8 ± 2.7
✓ ✗ 52.9 ± 2.4 46.3 ± 3.2 62.0 ± 2.7 36.0 ± 2.3
✓ ✓ 52.3 ± 1.5 41.8 ± 2.6 70.3 ± 2.4 35.4 ± 1.4

Sequence
labeling

✗ ✗ 53.6 ± 2.7 63.3 ± 1.2 46.5 ± 3.4 36.6 ± 2.4
✗ ✓ 53.1 ± 2.0 64.1 ± 2.7 45.6 ± 3.7 36.2 ± 1.9
✓ ✗ 55.9 ± 2.3 59.6 ± 3.6 53.0 ± 4.5 38.8 ± 2.2
✓ ✓ 58.4 ± 1.6 55.7 ± 3.1 61.6 ± 2.4 41.2 ± 2.0

Table 2. Stroke detection results across all model variants. Multi-
phase indicates whether the labeling scheme is multi-phase or bi-
nary and TE whether the Transformer encoder is present or not.
The last row corresponds to our proposed framework. The best
result for each column in bold, second best underlined.

We leave the test dataset without changes to check how our
model generalizes to imbalanced data. Further details on the
models’ layers and their dimensions are provided in Section
2 of the supplementary materials.

Evaluation Protocol Our evaluation utilizes subject dis-
joint k-fold cross-validation to ensure different subjects
(i.e., speakers in a dialogue) across folds. That is, the
dataset is partitioned into five distinct folds and, within each
fold, samples from a particular subject are strictly allocated
to either the testing or training set. This division allows us
to check the model’s generalizability to unseen subjects in
the test folds. The performance metrics reported in the re-
sults and analysis sections are the average scores computed
over all five test folds.

Evaluation Metrics Besides evaluation metrics used for
imbalanced data, such as precision, recall, and F1 scores
for the labels of interest, we use Intersection over Union
(IoU), also known as the Jaccard similarity, which is com-
monly used in object detection tasks and is also suitable for
sequence labeling. By assessing the overlap between the
predicted and true labels, IoU measures the extent of align-
ment between the models’ predictions and the actual labels.

6. Results
This section presents our main results. We first focus on

performance regarding the detection of the stroke phase and
then report the results obtained when detecting gesture units
(preparation, stroke, and retraction phases combined).

6.1. Gesture Stroke Detection

An overview of the results on gesture stroke detection
is given in Table 2. The first thing to notice is that all
the sequence labeling model variants outperform the clas-
sification variants on F1, precision, and IoU scores. Sec-
ondly, within each approach (classification vs. sequence la-
beling), all the multi-phase variants outperform the binary



variants on F1 and IoU scores. Finally, our proposed multi-
phase sequence labeling model (last row of the table) out-
performs all other approaches, with an F1 score of 58.4 and
an IoU score of 41.2. This shows that the two key compo-
nents of our framework, contextualized sequential predic-
tion and the use of a theoretically-motivated multi-phase la-
beling scheme, independently contribute to enhancing ges-
ture stroke detection.

Regarding the ablation of the Transformer encoder (col-
umn TE with ✗ in Table 2), we observe mixed results. In
general, Transformer encoding improves the recall and IoU
scores of the models (except for one case, the binary se-
quence labeler). It can also be seen that removing the Trans-
former tends to increase standard deviations, implying that
the model’s performance is less consistent across different
folds (hence, subjects). This might be due to the Trans-
former’s ability to pay selective attention to different parts
of the sequence, allowing it to generalize more effectively
to varied data instances. The role of the Transformer will
be explained in more detail in the following section.

Approach TE F1 Precision Recall IoU

Classification ✗ 63.2 ± 2.4 60.8 ± 3.9 66.0 ± 2.8 46.2 ± 2.6
✓ 65.7 ± 1.0 57.4 ± 1.9 76.8 ± 1.6 48.9 ± 1.1

Sequence
labeling

✗ 60.2 ± 3.6 73.5 ± 4.3 51.4 ± 5.2 43.2 ± 3.6
✓ 67.2 ± 1.9 72.2 ± 3.9 63.0 ± 2.6 50.6 ± 2.1

Table 3. Gesture unit detection results across multi-phase model
variants. TE indicates whether the Transformer encoder is present.
The best result for each column in bold, second best underlined.

6.2. Gesture Unit Detection

In this subsection, we focus on detecting full gesture
units, approximated by the combination of the preparation,
stroke, and retraction phases. We analyse the performance
of our multi-phase sequential labeling model and its classi-
fication counterpart on distinguishing between gesture units
as a whole and neutral segments.

Table 3 shows the gesture unit detection results. Our
multi-phase sequential labeling approach achieves the best
F1 score and IoU, 67.2 and 50.6, respectively. However, re-
garding recall and precision, two findings emerge. Firstly,
using the Transformer encoder noticeably enhances the re-
call rates across both classification and sequence labeling
approaches. This is evidenced by the diminished recall
rates observed in the ablated models that exclude the Trans-
former. Secondly, sequence labeling improves the precision
of gesture unit detection.

Interestingly, while the multi-phase sequence labeling
model without the Transformer encoder outperforms all
classification variants on F1 and IoU scores in the stroke de-
tection task (see Table 2), for the task of gesture unit detec-
tion its performance is lower than the classification models:

60.2 vs. 63.2 and 65.7 F1 scores in Table 3. This may be due
to its inefficiency in identifying the boundaries of strokes:
the preparation and retraction phases. The following section
analyzes the reasons behind these patterns, evaluating how
these models perform across different gestural phases.

7. Analysis

In this section, we zoom into the performance of multi-
phase models by analyzing their predictions regarding the
internal structure of gestural units.

7.1. Performance on each Gesture Phase

Table 4 shows the results of the multi-phase models bro-
ken down per gesture unit phase (the stroke results are
identical to those in Table 2). We clearly see that our
multi-phase sequential labeler with the Transformer en-
coder yields the best performance for the stroke and re-
traction phases and the second-best results for the prepa-
ration phase (where the best model is the ablated version
without the Transformer). However, these detailed results
also reveal that the models have more trouble identifying
the boundary phases (preparation and retraction) than the
stroke: 58.4 F1 score for the stroke vs. 35.8 and 28.3 F1
scores for preparation and retraction, respectively. The
multi-phase sequential model without the Transformer en-
coder yields particularly low results for the retraction phase:
merely 13.4 F1 score. The performance of this model on
the retraction phase can be explained by its dependency
on CRFs. In this model, CRFs depend on previous hidden
states (i.e. labels) and only on the embeddings of observed
states without incorporating context or positional data like
order or time (i.e. a context provided through the mecha-
nisms of the Transformer Encoder that this model does not
employ). We hypothesize that this property affects later hid-
den states more significantly than earlier ones because of the
inherent long sequential dependencies.

The multi-phase classifiers show promising results, par-
ticularly for boundary phases, though their performance
lags behind in the stroke phase, as already mentioned in
Section 6. In addition, given that the preparation and re-
traction phases have a similar number of samples (as shown
in Table 1), comparable classification results are to be ex-
pected for both. However, labeling the preparation phase
accurately turns out to be simpler than the retraction phase.
This consistency was observed across all multi-phase mod-
els. Similarly to the sequence labeling models, the clas-
sification models also yield lower results for the boundary
phases than for the stroke. A potential reason could be the
intricate dependencies of features close to gestures’ prepa-
ration and retraction phases, which we explore in the fol-
lowing subsection.



Preparation Stroke Retraction
Approach TE F1 IoU F1 IoU F1 IoU

Classification ✗ 34.5 ± 2.5 20.9 ± 1.8 52.9 ± 2.4 36.0 ± 2.7 20.3 ± 0.6 11.3 ± 0.4
✓ 29.6 ± 2.3 17.4 ± 1.6 52.3 ± 1.5 35.4 ± 1.4 24.9 ± 3.3 14.2 ± 2.2

Sequence labeling ✗ 35.8 ± 1.0 21.8 ± 0.8 55.9 ± 2.3 38.8 ± 2.2 13.4 ± 3.2 7.2 ± 1.8
✓ 34.9 ± 2.1 21.1 ± 1.3 58.4 ± 1.6 41.2 ± 2.0 28.3 ± 1.6 16.3 ± 1.5

Table 4. F1 and IoU scores for each gesture phase across multi-phase model variants. TE indicates whether the Transformer encoder is
present or not. The best result per column in bold, second best underlined.
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Figure 6. Confusion matrix for the multi-phase sequential labeler.

7.2. Interaction Between Gesture Phases

Here we investigate the relationship between different
gesture phases using the top-performing model, our pro-
posed multi-phase sequential labeler.

Confusion Matrix In the previous subsection, we high-
lighted that the models perform less efficiently in detecting
boundary phases compared to the stroke phase. This obser-
vation is also supported by the confusion matrix in Figure 6.
Earlier binary approaches to silent gestures suggested that
computational models often confuse the segments around
the strokes [14]. Interestingly, our models do not confuse
the preparation and retraction phases with each other. The
reason could be that these two phases involve different types
of movements. For instance, the preparation phase primar-
ily consists of upward hand movements, while the retraction
phase involves downward trends. As shown in Figure 6,
boundary phases are more often confused with their neigh-
boring phases: neutral and stroke. To gain more insight into
this observation, we next analyze the relationship between
gesture phases in the latent space learned by the model.

Latent-space of Gesture Phases Figure 7 shows the em-
beddings of sequences of gesture phases obtained via t-SNE
[20] to visualize the model’s latent space. Here, we visual-
ize sequences centered around the stroke, with all phases
present. The sequences start with a neutral phase, continue
with the preparation, stroke, and retraction phases of a ges-
tural unit, and again end with a neutral phase. The visual-

Phase

Stroke

Neutral

Retraction

Preparation

Figure 7. Visualization of gesture phases’ embeddings.

ization reveals that the clusters corresponding to each phase
are distinguishable in latent space to varying degrees. No-
tably, the retraction phase, which is characteristically asso-
ciated with poorer performance across all models compared
to other phases, has a less distinct cluster. A closer look at
the latent space reveals that this phase’s data points mainly
relate to neutral movements, and to a lesser extent, to the
stroke phase, a pattern also observed in the confusion ma-
trix in Figure 6.

8. Conclusions and Future Directions
In this study, we have tackled the problem of automatic

gesture detection. Most recent approaches treat this task as
binary classification, using data restricted to a limited range
of silent gestures. In contrast, we have proposed a novel
framework that emphasizes the structured and sequential
nature of gestures, focusing on co-speech gestures in nat-
uralistic, conversational data. Our framework reframes the
gesture detection task as a multi-phased sequence label-
ing problem, exploiting a theoretically motivated labeling
scheme that distinguishes between the preparation, stroke,
and retraction phases of gesture units.

Our model processes sequences of skeletal movements
represented as spatio-temporal graphs over time windows,
uses Transformer encoders to learn contextual embeddings,
and leverages Conditional Random Fields to perform se-
quence labeling. In our experiments, we compare our pro-
posed model to strong baselines. The results show that
sequence labeling methods outperform classification ap-



proaches on gesture stroke detection and that the presence
of the Transformer encoder improves gesture unit detection
for all models, but especially for sequential prediction vari-
ants. Finally, we observed that all models are more skilled at
detecting the gesture stroke than its boundaries, particularly
the retraction phase—an aspect which we aim to improve
upon in future work. Overall, our results and analyses high-
light our framework’s capacity to capture the fine-grained
dynamics of co-speech gesture phases, paving the way for
more nuanced and accurate automatic gesture detection.
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