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Abstract

Iconicity, the resemblance between linguis-
tic form and meaning, is pervasive in signed
languages, offering a natural testbed for vi-
sual grounding. For vision-language models
(VLMs), the challenge is to recover such es-
sential mappings from dynamic human mo-
tion rather than static context. We introduce
the Visual Iconicity Challenge, a novel video-
based benchmark that adapts psycholinguistic
measures to evaluate VLMs on three tasks: (i)
phonological sign-form prediction (e.g., hand-
shape, location), (ii) transparency (inferring
meaning from visual form), and (iii) graded
iconicity ratings. We assess 13 state-of-the-
art VLMs in zero- and few-shot settings on
Sign Language of the Netherlands and com-
pare them to human baselines. On phonologi-
cal form prediction, VLMs recover some hand-
shape and location detail but remain below hu-
man performance; on transparency, they are far
from human baselines; and only top models cor-
relate moderately with human iconicity ratings.
Interestingly, models with stronger phonologi-
cal form prediction correlate better with human
iconicity judgment, indicating shared sensitiv-
ity to visually grounded structure. Our findings
validate these diagnostic tasks and motivate
human-centric signals and embodied learning
methods for modelling iconicity and improving
visual grounding in multimodal models.

1 Introduction

Language is inherently multimodal: besides speech
and text, it includes co-speech gesture and signed
languages. Across these modalities, iconicity is
the non-arbitrary link between form and meaning.
Iconicity can be visual (e.g., speakers use iconic
gestures through drawing shapes or trajectories in
the air, adding depictive content alongside speech)
or even vocal, as in onomatopoeia like “knock
knock”, showing that form can transparently re-
flect meaning (Perlman and Lupyan, 2018). Within
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Figure 1: Overview of the Visual Iconicity Challenge:
evaluation pipeline of the sign TO-CUT in NGT for
phonological form prediction, (top right), transparency
(bottom left), and iconicity (bottom right) tasks.

signed languages, iconicity is widespread. Esti-
mates suggest that at least a third of lexical signs
are iconic (Boyes-Braem, 1986; Campbell et al.,
2025) and that between 50-60% of signs’ structure
can be directly linked to the physical features of
their referents (Ortega, 2017; Pietrandrea, 2002).
They depict actions or shapes, providing a natural
laboratory for studying the symbol grounding prob-
lem: how concepts connect to the physical world
(Campbell et al., 2025; Taub, 2001).

For vision-language models (VLMs), sensitivity
to form—meaning mapping is a core test of ground-
ing in human-centric signals (Bisk et al., 2020).
This is especially relevant for applications in sign
language understanding and translation, as well as
gesture and action recognition. A capable VLM
should attend to dynamic bodily movements and
hand configurations— not just static objects or text—
when interpreting a sign or gesture. Following
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Yin et al. (2021), signed languages offer a natu-
ral testbed for developing and evaluating models
that must perceive temporally extended, simultane-
ous, visuospatial structure, rather than relying on
static context alone. However, modern VLMs may
exhibit static biases: they over-rely on contextual
objects or background features and under-attend
to dynamic human actions (Nishida et al., 2025;
Yu et al., 2025). Testing VLMs on iconicity thus
offers a proof of concept for machine interpretation
of visual-bodily form-meaning mappings, while re-
vealing concrete directions for improvement.

To address these questions, we build the Vi-
sual Iconicity Challenge': a sign dataset of
Sign Language of the Netherlands (NGT), manu-
ally annotated with ground-truth phonological fea-
tures, iconicity types, and iconicity ratings by non-
signers, based on Ortega et al. (2019). The dataset
distinguishes between iconic signs (with clear vi-
sual links to meaning) and arbitrary signs (with no
visual resemblance).

We evaluate whether models capture different
layers of sign—meaning structure, introducing three
complementary tasks. Because iconicity links vi-
sual form to meaning, it depends on both phono-
logical form competence and analogical reason-
ing, requiring models to map structured move-
ment onto conceptual meaning through perceptuo-
motor analogy (Thompson and Do, 2019). First,
we test whether models can recognise the phono-
logical form of signs, including handshape, loca-
tion, and movement features. Second, we exam-
ine transparency: if a model can infer a sign’s
intended meaning from visual form alone (Hoe-
mann, 1975), as non-signers often do (Sehyr and
Emmorey, 2019). Finally, we test their sensitivity
to iconicity itself, i.e., whether they can approx-
imate human judgments of graded iconicity. Be-
cause previous work shows that VLMs may some-
times rely more on textual or contextual cues than
on visual evidence (Nishida et al., 2025), the first
two tasks also serve as checks that the models gen-
uinely attend to the visual signal of the sign. Fig-
ure 1 shows an overview of the three components.
In summary, our contributions are:

e introducing the Visual Iconicity Challenge, a
benchmark of NGT signs with ground-truth
sign phonological annotations and iconicity
ratings;

'"The name is inspired by the “vocal iconicity challenge”
of Perlman and Lupyan (2018).

* collecting human baselines for phonology and
transparency from a deaf signer and hearing
sign-naive participants;

* conducting the first large-scale zero- and few-
shot assessment of state-of-the-art VLMs on
sign language iconicity, analysing models’ bi-
ases for object-based iconicity and failures of
form—meaning transparency;

* releasing evaluation code, annotations, and
human baselines via a repository for repro-
ducibility and reuse.’

2 Related Work

Iconicity in language and computational mod-
els. Iconicity has long been analysed as structure
mapping between form and meaning in signed lan-
guages (e.g., depiction of shape or action) (Taub,
2001; Ortega, 2017; Pietrandrea, 2002). Psycholin-
guistic and lexical studies report substantial iconic-
ity in signed lexicons and roles for iconicity in
acquisition, processing, and L2 learning (Boyes-
Braem, 1986; Campbell et al., 2025; Karadoller
et al., 2024; Caselli and Pyers, 2020).

Recent NLP research has explored analogous
patterns in spoken language models. Large lan-
guage models can capture sound symbolism ef-
fects. For example, GPT-4 can generate iconic
pseudowords whose meanings humans and mod-
els guess above chance (Marklova et al., 2025).
Furthermore, larger language models align with
human iconicity ratings, indicating some sensitiv-
ity to sound symbolism (Loakman et al., 2024).
Metaphor understanding, like iconicity, depends on
analogical mapping between domains (Lakoff and
Johnson, 1980). Tong et al. (2024) introduce the
Metaphor Understanding Challenge, which tests
whether LLMs can interpret metaphors by distin-
guishing target-domain paraphrases from literal
source-domain alternatives. Their findings show
that even advanced models often rely on surface
similarity rather than analogy.

In the visual modality, sound symbolism stud-
ies report weak or dataset-driven effects in
CLIP/Stable Diffusion (Alper and Averbuch-Elor,
2023) and mixed evidence for shape/magnitude
symbolism in VLMs (Loakman et al., 2024). Ex-
tending this understanding to the visual-manual
modality of signed languages requires VLMs,
which we address in this work.

*https://github.com/kelesonur/Visual_Iconicity_Challenge
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General multimodal benchmarks. Large-scale
multimodal benchmarks have assessed VLM ca-
pabilities on image captioning, VQA, and social
signals. For example, Zhang et al. (2025) introduce
MMLA, a suite of 61K multimodal utterances with
labels for intent, emotion, style, etc., and report
that even fine-tuned state-of-the-art models plateau
around 60-70% accuracy. Furthermore, Li et al.
(2025) introduce a Multimodal Causal Reasoning
benchmark testing whether multimodal models can
infer causal relations when crucial evidence ap-
pears in visual details. Their results show that mod-
els with strong textual reasoning still struggle with
visual-conceptual integration. These resources and
findings evaluate general multimodal capabilities
but do not measure whether models map signed vi-
sual form onto meaning or assess graded iconicity
relative to human judgments.

Gesture and sign understanding with VLMs.
VLMs underperform on indexical/iconic gestures,
especially with visuals-only input, indicating re-
liance on textual priors (Nishida et al., 2025). Sys-
tems like GIRAF mitigate this by injecting struc-
tured descriptors (pose skeletons, segmentations,
depth) before LLM reasoning, achieving 75% on
deictic and 50% on iconic gestures (Lin et al.,
2023). Similarly, Zhang et al. (2024) introduce
Pose-enhanced VLM, which integrates a skeletal
pose modality into a CLIP-like model: one module
uses the 2D pose to guide the visual attention to
body joints, and another enriches the pose represen-
tation with visual context. This integration yields
fine-grained action recognition by encouraging the
model to focus on human motion cues. In sign lan-
guage specifically, recent systems fuse additional
signals. For example, SignLLM leverages human
poses to generate sign language poses for digital
human or avatar generation (Fang et al., 2025).

To our knowledge, no prior work has system-
atically probed VLMs on iconicity in sign lan-
guages. Our study is the first to do so at scale, eval-
uating how well off-the-shelf VLMs perceive the
form—meaning transparency that signers exploit.

3 Dataset: The Visual Iconicity Challenge

We present a dataset built on the Sign Language
of the Netherlands (NGT) from Karadoller et al.
(2024) and Ortega et al. (2019). It contains 96 sign
videos (64 iconic signs and 32 arbitrary signs), each
with an English gloss (meaning) and human iconic-
ity ratings ranging from 1 to 7 (see the full dataset

Item Ortega et al. Ours
Phonology form features
(based on Klomp and Pfau 2020)
Handshape X v
Location X v
Path shape X v
Path repetition X v
Handedness X v
Transparency
labels (N=96) v v
Iconicity
Ratings (1-7) v v
Labels (lcnnic vs. arbitrary) v v
Types (e.gq Object or action
based)
Human baselines
Phon. form prediction v
Transparency X v
Iconicity ratings v v

Table 1: Comparison of the original NGT sign videos
dataset (Ortega et al., 2019; Karadoller et al., 2024) and
our extensions for the visual iconicity challenge.

in Appendix A). This categorisation is based on
human iconicity ratings. Signs with low ratings
(M = 2.10, SD = 0.50) were classed as arbitrary,
and signs with high ratings (M = 5.13, SD = 1.02)
were classed as iconic.

Our evaluation operationalises iconicity through

three complementary tasks targeting different form-
meaning mapping levels. (i) Phonological form
prediction examines whether models perceive the
articulatory structure of a sign (handshape, loca-
tion, movement). (ii) Transparency asks models to
recover a sign’s lexical meaning from visual form
alone, indexing analogical mapping from form to
concept while minimising reliance on linguistic pri-
ors. (iii) Graded iconicity rating evaluates whether
models are sensitive to the degree of resemblance
between form and meaning by correlating model
ratings with human judgments.
Hypothesis. Models that better predict phonologi-
cal features (e.g., handshape, location, path) should
better capture iconicity, since both require ground-
ing in structured bodily properties.

Motivated by the view that iconicity relies on
both phonological form competence and analogical
reasoning (Thompson and Do, 2019), we extend
the original resource with: (i) detailed phonolog-
ical annotations for each sign, (ii) iconicity-type
labels, and (iii) human baselines for phonology and
transparency. These additions support evaluation
of VLMs from sub-lexical perception to graded
iconicity. See Table 1 for a comparison between



Gloss: TELEPHONE

Type: Iconic

Handshape: Two fingers extended
Location: Head

Path Shape: Hold

Path Repetition: No

Handedness: One-handed

Gloss: SUGAR

Type: Arbitrary

Handshape: All fingers extended
Location: Head

Path Shape: Straight

Path Repetition: No
Handedness: One-handed

Figure 2: Examples of an iconic vs. an arbitrary sign,
with their annotated phonological form features. The
sign TELEPHONE is iconic as its form resembles a
telephone’s shape, whereas SUGAR is arbitrary with no
clear visual link to its meaning.

the original dataset and our extensions.

3.1 Sign Phonological Form Features

We annotate phonological form features of each
sign using a standard NGT phonology frame-
work (Klomp and Pfau, 2020). These are discrete,
visual descriptors of articulation (elaboration on the
annotation criteria is in Appendix B). In summary,
we use five phonological parameters:

* Handshape: 7 categories (e.g., fist, flat hand,
one finger extended, etc.). Figure 2 illustrates
a few categories of the annotated handshapes.

e Location: 5 categories of where on the
signer’s body or space the sign is articulated,
i.e., face/head, torso, arm/shoulder, the oppo-
site hand, or neutral space.

* Path Shape: 4 categories of movement trajec-
tory shape, i.e., no movement/hold, straight
line, arched curve, and circular motion.

* Path Repetition: 2 categories (whether the
movement is repeated or only single).

* Handedness: 3 categories (one-handed sign,
two-handed symmetrical, or two-handed
asymmetrical).

A deaf signer and a hearing non-signing re-
searcher performed the annotations. To assess re-
liability, inter-annotator agreement ranged from
77.9% (k = 0.73) for handshape to 98.9% (k =
0.98) across parameters. All disagreements were
discussed and resolved. These reliable annota-
tions serve as a gold-standard reference or “ceiling”
for assessing how well models can recognise sign
form.

Task. Given a sign video, models perform multi-
class prediction for each parameter: handshape, lo-
cation, path shape, path repetition, and handedness.
For this task, we report the accuracy of the model
predictions per parameter and the overall average
accuracy. This task checks whether the model is
capable of extracting form information from the
video: where and how signs were articulated.

Human baseline. We gather baseline results
from human participants for all the phonological pa-
rameters. The 96 stimulus signs were divided into
four lists of 24 signs each. Four sign-naive under-
graduate participants (i.e., without prior knowledge
of sign language) were recruited and randomly as-
signed to lists in a counterbalanced design. Each
participant judged all 24 signs in their list on both
the phonological feature tasks and the transparency
(open-set meaning identification) task. This pro-
vided a sign-naive baseline for both tasks. The hu-
man baseline mean phonological accuracy was 0.79
(highest for handedness, lowest for handshape).

3.2 Sign Transparency

Task. Transparency tests whether meaning can
be inferred from visual form alone. We use the
gloss list (i.e., meaning) of each sign, which is
provided in the original dataset. We evaluate two
settings: Transparency; (open-set identification
among all 96 glosses) and Transparency, (mul-
tiple choice with 10 candidates: the target gloss
plus 9 distractors). We use accuracy as the primary
metric (proportion of signs correctly identified).
Human baseline. The deaf signer (who anno-
tated the phonological form features and is not
a native NGT signer) identified 57/96 glosses in
the open-set setting; the sign-naive group identi-
fied 40/96 (same participants and lists as in the
phonology baseline). These provide upper- and
lower-bound human references for Transparency;.

3.3 Sign Iconicity Ratings

Task. This task probes whether models capture
the degree to which a sign’s form resembles its
meaning. We use the original crowdsourced iconic-
ity ratings as human baselines (see Appendix A).
Each sign has an average iconicity rating on a 1-7
scale (with 7 = “looks exactly like its meaning”, 1
= “not iconic at all”’). Models are prompted to pro-
duce the iconicity rating for each sign (i.e., the de-
gree of the sign’s resemblance to its meaning). We
compute Spearman’s rank correlation p between



the model’s ratings and the average human iconic-
ity ratings for the signs.

Iconicity types. Iconicity type influences how
signers perceive, process, and acquire signs (Or-
tega et al., 2014, 2017). We annotate each sign for
its iconicity type to probe how well models align
with these distinctions. These include object-based
signs (/N = 16), where the handshape visually re-
sembles a property of the referent (e.g., the wings
of a butterfly), and action-based signs (N = 30),
where the hand depicts an action performed on or
by the referent (e.g., brushing teeth). The remain-
ing 16 signs belonged to a third category named
“combined”, where both strategies were employed
for the same sign. The descriptions of these types
can be found in Appendix D. These label types
enable us to analyse how different iconic strategies
affect model predictions and human perception.

4 Models and Inference

Models. We evaluate a representative and di-
verse set of 10 open-source VLMs and 3 propri-
etary models. Open models include: Qwen2.5-
VL (72B/32B/7B) (Bai et al., 2025), VideoL-
LaMA?2 (72B/7B) (Cheng et al., 2024), LLaVA-
Video-Qwen2 (72B/7B) (Li et al., 2024), LLaVA-
Onevision-Qwen2 (72B/7B) (Liu et al., 2024), and
Gemma-3 (27B) (Team et al., 2025). We evaluate
three proprietary (closed-source) large multimodal
models: GPT-4o0 (OpenAl, 2024), GPT-5 (OpenAl,
2025), and Gemini 2.5 Pro (Team, 2025).

For inference, smaller models (7B) were run
efficiently on a single NVIDIA A100 GPU, while
larger models (27B >) were distributed across up
to four A100 GPUs. Closed-source models were
queried via API calls.

Zero-shot setup. All models are evaluated
in a zero-shot manner first. We craft a
prompt/instruction template for each task that is
standardised across models. The prompts explicitly
describe the task and the expected answer format,
and we ensure the output format is constrained (e.g.
just a single number for ratings, or a one-word an-
swer for glosses). For example, for the iconicity
rating task, the prompt to the model is:

This sign means: <MEANING>. Some signs are
iconic, and some are arbitrary. Find visual re-
semblances between the meaning and the form
of the sign. How much does the sign look like
“<MEANING>"? Answer with only one number:
1,2,3,4,5,6,7 (1=not at all, 7=exactly).

The prompts for all tasks and features can be
found in Appendix C. We do not use chain-of-
thought prompting or specialised prompting tools,
as initial trials with those did not show clear ben-
efits. Our aim is to first establish baseline per-
formance; more sophisticated prompting or fine-
tuning can be explored in future work.

Few-shot setup. To examine whether a few ex-
amples can improve models’ performance, we con-
duct 4-shot experiments with four selected models.
We choose the open model families that perform
best in zero-shot: Qwen2.5-VL-72B, Qwen2.5-
VL-32B, Qwen2.5-VL-7B and Gemma-3-27B. We
omit closed models in these settings since few-shot
probing suggests that GPT-5 and Gemini are al-
ready comparatively well-calibrated in zero-shot
settings, showing only marginal benefit.

We provide 4 example QA pairs (two iconic
signs and two arbitrary signs) before the test query,
using the same instruction format and showing the
correct outputs for those examples. This few-shot
setup gives the model a better understanding of
the task with visual examples of iconic & arbitrary
signs, which effectively offer a window into the
learnability of the tasks and how to improve the
model’s performance. For Qwen2.5-VL, exemplars
and test items were provided as short video clips
paired with gold answers. For Gemma-3, which
does not natively support video, we extracted up to
eight evenly spaced frames per clip and supplied
both exemplars and test inputs as frame sequences.

5 Results & Discussions

5.1 Phonological Form Prediction

Zero-shot. We observe clear differences across
VLMs in phonological form features. Figure 3
shows the accuracy of each model on the five
phonological sub-tasks. For example, the loca-
tion of the sign (where on the body the sign is
articulated) and handedness (one vs. two hands)
were the easiest. For location, 6/12 models reach
> 0.70 (best 0.86), while for handedness, 9/12
exceed 0.70. In contrast, the handshape and path
shape are the hardest, whereas only GPT-5 and
Gemini 2.5 Pro exceed 0.50. Most models exceed
the random baseline but remain well below the
human mean of 0.794. For example, Gemini 2.5
Pro leads (M = 0.706), closely followed by GPT-5
(0.698). The best open-source models are Qwen?2.5-
VL-72B (M = 0.598) and Gemma-3-27B (0.535).
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Figure 3: Zero-shot accuracy per form feature. Solid black lines indicate the human baseline, and dashed grey lines

refer to random. Bars show VLMs. Across models, location

and handedness are comparatively easy; handshape and

path shape are hardest; path repetition is intermediate. Numbers on bars are mean accuracies.

Overall, while we see large models encode phono-
logically relevant structure, still, the absolute gap
remains large: human accuracy is far higher for
most features. A radar plot in Figure 8 in Appendix
F visualises the performances of humans and rep-
resentative models.

Interestingly, the performance patterns of mod-
els for each form feature in Figure 3 mirror well-
established acquisitional asymmetries in sign lan-
guage. Like deaf children and adults (Keles et al.,
2022; Sandler and Lillo-Martin, 2006; Morgan
et al., 2007; Marentette and Mayberry, 1999), mod-
els find location easier than handshape.

Few-shot Few-shot prompting yields only mod-
est, model-dependent accuracy gains for the se-
lected open-source VLLMs. (Table 2). Qwen2.5-VL-
32B and Gemma-3-27B improve slightly, while
Qwen2.5-VL-72B changes little, indicating that
few-shot prompting mainly benefits models with
lower zero-shot performance (possibly by helping
them interpret the task format).’

5.2 Sign Transparency

Zero-shot. Open-set gloss identification is highly
challenging (Table 3). Even the strongest closed-
source models perform poorly: best model (i.e.,
Gemini 2.5 Pro) identified only 17 of the 96 glosses

3A closer look at task-level breakdowns reveals uneven
effects: the largest gains occur for path shape and handedness,
while location remains unstable, handshape shows minimal
improvement, and path repetition is largely unaffected. This
suggests that few-shot prompting primarily helps models dis-
ambiguate structural features like path shape and handedness.

Mean Accuracy

Model

0-shot 4-shot
Qwen2.5-VL-72B  0.598 0.600
Qwen2.5-VL-32B  0.552 0.620
Gemma-3-27B 0.535 0.572
Qwen2.5-VL-7B 0.417 0.550

Table 2: Comparison of zero-shot and 4-shot
performance on the phonological form prediction task.

(=17.7%). This is well below human baselines
(57/96 for the deaf expert, 40/96 for hearing non-
experts). Restricting the task to a 10-multiple-
choice format improves scores (e.g., 42/96 for
GPT-5 and 41/96 for Gemini 2.5 Pro) Open-source
VLMs perform even worse, with the best achiev-
ing only 5/96 correct identifications (Qwen2.5-VL-
32B). The consistent advantage of the closed mod-
els over all open-source systems indicates that high-
capacity proprietary VLMs are better at leveraging
visual and linguistic cues.

Across models, correct predictions often clus-
ter on visually obvious signs such as TELEPHONE,
TO-WRING, TO-CUT, and PISTOL with 9 out of
13 models correctly guessing them (see Figure 7
in Appendix F). Interestingly, some arbitrary but
cross-linguistically shared signs (e.g., TO-ORDER,
PERSON, TO-ARGUE, and TO-DIE) were success-
fully guessed by a handful of VLMs.* Identifica-
tion of such arbitrary signs suggests that their forms

*Most of these arbitrary signs were guessed correctly by
our human participants too.



Model 96 options 10 options Model p d
Human baselines GPT-5 0.607""  1.382
Deaf signer 0.594 - Gemini-2.5-Pro 0.577""  1.435
Hearing non-signer 0.417 - GPT-4o 0.248" 0.432
Models Qwen2.5-VL-72B 0.501""  0.800
GPT-5 0.156 0.438 Gemma-3-27B 0.452""  1.216
Gemini-2.5-Pro 0.177 0.427 Qwen2.5-VL-7B 0.456™"  0.693
GPT-4o 0.073 0.354 VideoLLaMA2-72B 0.400™"  0.790
Qwen2.5-VL-32B 0.052 0.177 Qwen2.5-VL-32B 0.344™  0.519
LLaVA-OV-Qwen2-72B 0.031 0.156 LLaVA-OV-Qwen2-72B 0.223°  0.278
VideoLLaMA2-72B 0.031 0.156 LLaVA-OV-Qwen2-7B 0.119™ 0.204
Qwen2.5-VL-72B 0.021 0.167 LLaVA-Video-7B-Qwen2 ~ 0.109™  0.195
Gemma3-27B 0.021 0.125 LLaVA-Video-72B-Qwen2  0.102™  0.133
LLaVA-Video-72B-Qwen2 0.021 0.125 VideoLLaMA2-7B 0.101™ 0.136
Qwen2.5-VL-7B 0.021 0.115

LLaVA-OV-Qwen2-7B 0.021 0.073 . i i
LLaVA—Vide)JB—QwenZ 0.010 0.146 Table 4: Graded iconicity rating r.esults in terms of
VideoLLaMA2-7B 0.010 0.125 Spearman p and Cohen’s d. Significance codes:
Chance (random) 0.010 0.100 p <.05,"p <.01,™p < .00, nsp > .05.

Table 3: Transparency task accuracy in 96-option and
10-option conditions.

still contain strong visual cues, possibly through
conventional metaphorical mappings shared across
sign languages (Meir and Cohen, 2018).

Few-shot. Four-shot prompting yields no mean-
ingful gains. In the 96-way setting, Qwen2.5-VL
(72B & 32B) and Gemma-3-27B each identify 2
of 92 items, and Qwen2.5-VL-7B identifies 1 of
92. In the 10-choice format, the same models score
15-16 of 92, matching their zero-shot levels. These
results suggest the bottleneck is not just understand-
ing the task format, but a fundamental limitation in
the models’ visual-semantic grounding.

5.3 Sign Iconicity

Zero-shot. For iconicity ratings (Table 4), we ob-
serve that some models show positive moderate cor-
relation with human iconicity judgment (p > 0.40,
p < .001). For instance, GPT-5 reaches the high-
est correlation with human ratings (p ~ 0.61).
Among open VLMs, Qwen2.5-VL-72B achieves
the strongest correlation with human judgments
(p = 0.501), while Gemma-3-27B shows the best
categorical separation (Cohen’s d = 1.216) of icon-
ics vs arbitrary signs.

Despite these promising results, most models
compress the scale around the midpoint and sys-
tematically over-rate arbitrary signs, thereby reduc-
ing contrast between iconic and arbitrary categories
compared to human ratings.

Few-shot. Few-shot prompting yields clear but
uneven effects (Table 5). The larger Qwen2.5 mod-

els benefit most, with Qwen2.5-VL-32B showing
a sharp gain in correlation (p: 0.344 — 0.510) and
Qwen2.5-VL-72B improving moderately on both
correlation and separation. For Gemma-3-27B,
few-shot examples produce only small or incon-
sistent changes, while Qwen2.5-VL-7B declines
substantially. Overall, these mixed results indicate
that few-shot cues are most helpful for large open
models that underperform relative to their capac-
ity, but provide little advantage for the strongest
models already close to human-like calibration.

Model P 4

0-shot  4-shot 0-shot 4-shot
Gemma-3-27B 0452 0484 1.216 1.021
Qwen2.5-VL-72B  0.501  0.521 0.800 1.021
Qwen2.5-VL-32B  0.344 0.510 0.693 0.941
Qwen2.5-VL-7B 0.456  0.321 0.519 0418

Table 5: Comparison of zero-shot and 4-shot
performance on the graded iconicity rating.

Type of iconicity. We perform a post-hoc analy-
sis to examine whether models differ in how they
handle different kinds of iconic signs. Iconicity
is commonly classified by whether a sign depicts
an object’s shape or a human action (Ortega et al.,
2019). Human raters show a robust preference for
action-based signs over object-based ones, consis-
tent with findings that action signs are acquired
earlier and processed more easily due to their trans-
parent “hand-represents-hand” mappings (Ortega
et al., 2017; Stimer and Ozyijrek, 2025). As illus-
trated in Figure 4, both humans and large models
clearly distinguished arbitrary from iconic signs,
indicating that models can broadly recognise iconic
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Figure 4: Average iconicity ratings by iconicity type
(higher = more iconic).

structure. However, within iconic signs, differences
emerged. Humans show a consistent action bias,
whereas most open-source models displayed the
reverse pattern, favouring object-based signs that
depict visual features rather than actions. Closed-
source models such as Gemini and GPT-5 showed
little to no preference between the two types. This
inversion suggests that while models might iden-
tify iconicity, they rely more on static visual resem-
blance than on dynamic mappings.

We argue that humans ground iconicity in em-
bodied experience, mapping hand actions onto con-
ceptual structure, while models—Iacking such bod-
ily grounding—depend on surface correlations be-
tween form and referent. As a result, they might
tend to overvalue object-based resemblance and un-
derestimate dynamic agency, highlighting the gap
between visual pattern recognition and embodied
understanding of sign meaning.

6 Interaction of Iconicity and Phonology

We hypothesise that models with stronger phono-
logical form predictions are better at rating graded
iconicity, as both require grounding in structured
bodily properties. Indeed, as shown in Figure 5,
models with higher phonological form accuracies,
such as Gemma-3, GPT-5, and Gemini 2.5, also
achieve closer alignment with human iconicity rat-
ings. Conversely, models with weaker phonolog-
ical representations (e.g., smaller Qwen variants)
show both lower accuracy on phonological features
and less consistent treatment of iconicity. This pat-
tern suggests that sensitivity to phonological form
and to form—meaning mappings are not indepen-
dent, but may partly co-develop (Emmorey, 2014).

From a cognitive perspective, this link mirrors
the human case: iconicity is tied to phonologi-
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Figure 5: Overall model landscape by zero-shot
phonological form prediction accuracy and iconicity
scores. Top-right are best; dot size encodes model size.

cal awareness in sign language because mapping
form features onto conceptual structure requires at-
tending to both form and meaning simultaneously.
Yet, unlike humans, models systematically over-
rate object-based iconicity (see Figure 4), showing
that their phonological sensitivity alone does not
reproduce embodied biases. In other words, while
better phonology helps models approximate human
iconicity ratings in general, it does not prevent them
from favouring visually simpler object correspon-
dences over dynamic action mappings.

7 Conclusion

We introduced the Visual Iconicity Challenge, a
diagnostic evaluation that probes phonological
form prediction, meaning prediction from form,
and iconicity ratings in the Sign Language of the
Netherlands. Our evaluations suggest that, com-
pared to human baselines, larger vision large lan-
guage models partly mirror human phonological
difficulty patterns (e.g., handshape is more difficult
than location), can distinguish iconic from arbi-
trary signs, and correlate moderately with graded
human iconcity ratings. Yet they fail to infer lex-
ical meaning and show a different iconicity-type
bias. Bridging this gap requires richer gesture/sign
pretraining and dynamic pose encoding. For fu-
ture work, we suggest integrating structured pose
information via tools such as MediaPipe (Lugaresi
et al., 2019) or VideoPrism (Cheng et al., 2024),
and fine-tuning with auto-generated phonological
descriptors (e.g., “fist moves upward near head”) to
provide geometric grounding that raw video lacks.



8 Limitations

Our evaluation has several constraints. The dataset
is small (96 isolated NGT signs) with citation-
style clips that may not generalise to other sign
languages or continuous discourse. Phonologi-
cal annotations cover five major parameters but
omit finer-grained features (orientation, aperture
changes, non-manual markers), and the mixed lex-
ical classes (verbs vs. nouns) may affect trans-
parency and iconicity patterns.

Furthermore, we evaluated models only in zero-
shot and few-shot settings without fine-tuning,
which establishes a diagnostic baseline but likely
underestimates potential performance with sign-
specific training. Future work may explore fine-
tuning, examine model-specific factors (parame-
ter count, memory footprint, mixture-of-experts
activation patterns during inference to examine
the processing of signs with different levels of
iconicity), test robustness under visual perturba-
tions (noise, motion blur), conduct stratified anal-
yses by iconicity type (action-based vs. object-
based) and sign difficulty levels, and perform qual-
itative error analysis to identify whether failures
stem from visual perception, analogical reasoning,
or lexical-semantic grounding deficits.
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A Stimuli
Iconic Signs (n = 64)

Sign Iconicity rating \ Sign Iconicity rating
TO-BREAK 6.79 TO-INJECT 5.0
TO-CRY 6.74 TO-STAPLE 4.89
WINDSCREEN WIPER 6.63 CALCULATOR 4.8
TO-CUT 6.61 PENGUIN 4.78
ELEPHANT 6.53 RATTLE 4.75
BICYCLE 6.44 CAR 4.7
BIRD 6.42 CURTAINS 4.7
BABY 6.39 BRIDGE 4.6
KEY 6.26 DEER 4.6
TELEPHONE 6.22 HELICOPTER 4.6
TO-WRING 6.12 MONKEY 4.5
TO-SWIM 6.11 SPIDER 4.5
TO-SLAP 6.11 ZIMMER 4.42
TO-PUMP 6.11 TO-ERASE 4.2
PIANO 6.05 TO-SMS 4.2
TO-KNOCK 6.05 PLANE 4.11
BUTTERFLY 5.94 BALL 4.05
TO-CRASH 5.79 DOOR 4.0
SNAKE 5.74 WHEELCHAIR 4.0
TO-FLY 5.74 CHICKEN 3.83
TABLE 5.7 BLANKET 3.8
PISTOL 5.61 CELL 3.8
EAGLE 5.53 DRILL 3.8
TO-CUT 5.51 TO-PLAY-CARDS 3.8
LAPTOP 5.44 BOTTLE 3.68
UMBRELLA 5.42 CAT 3.61
TO-JUGGLE 5.42 SUITCASE 3.6
CAMEL 5.4 LOBSTER 3.5
SPOON 5.3 TO-PUT-CLOTHES-ON 3.32
TO-STEAL 5.11 BED 3.21
TOWEL 5.1 RESTAURANT 3.21
BOX 5.05 RABBIT 3.16

Arbitrary Signs (n = 32)

Sign Iconicity rating \ Sign Iconicity rating
AMBULANCE 3.11 MUMMY 2.06
TO-ARGUE 2.94 KIWI 2.06
BEAR 2.89 TO-GOSSIP 2.0
TO-SHOUT 2.79 TO-GO-OUT 1.89
INTERPRETER 2.74 TOILET 1.79
DOG 2.69 ELECTRICITY 1.79
TO-DIE 2.58 PRAM 1.74
PERSON 2.53 DOCTOR 1.74
TO-ORDER 2.44 BUS 1.74
TREE 2.26 HORSE 1.67
TO-LAUGH 2.26 WATER 1.63
SOFA 2.26 BUILDING 1.63
ROOM 222 PUPPET 1.53
SHEEP 2.16 FRUIT 1.47
FIRE 2.11 SUGAR 1.37
TO-COOK 2.11 LIGHTBULB 1.22




B Criteria for Phonological Feature
Annotation

The following guidelines summarize the decision criteria we
applied when annotating the five phonological features of each
NGT sign. Our annotations were mainly based on the descrip-
tions drawn from the phonology chapters of A Grammar of
Sign Language of the Netherlands (NGT) (Klomp and Pfau,
2020). We follow the general phonological descriptions in
the NGT grammar but use our own simplified label set for
annotation and model evaluation.

Handshape: Handshapes were coded using seven discrete
labels:

» All fingers closed to a fist

* All fingers extended

 All fingers curved or clawed

* One (selected) finger extended

* One (selected) finger curved or clawed
* Two or more (selected) fingers extended

* Two or more (selected) fingers curved or clawed

These categories are drawn from the NGT phonological
inventory, but we simplify them by collapsing sub-types and
by omitting features such as orientation or aperture change.
However, our labels treat each sign as having a single static
handshape; they therefore do not fully capture signs in which
the handshape itself changes over time. For example, signs
where a fist closes or opens during the articulation. For such
dynamically changing signs we accepted multiple answers as
correct, so that both start and end configurations are treated as
valid.

Location: Each sign was assigned to one of five major
location categories:

* Hands touching head/face

* Hands touching torso

* Hands touching arm

* Hands touching weak/passive hand

* Hands in front of the body or face (neutral space)

If a sign involved contact with multiple regions, the primary
lexical target location was coded.

Path Shape: Primary path movement was classified using
four labels:

* Hold: no path or directional movement

* Straight: linear horizontal, vertical, or diagonal trajec-
tory

* Arched: curved or semicircular trajectory

¢ Circular: full or near-full circular path

Path Repetition: Repetition of the movement was coded
as:

« Single: one primary stroke

* Repeated: movement is repeated

Handedness: Handedness was coded according to the
two-handed typology:

¢ One-handed

¢ Two-handed symmetrical: both hands share the same
handshape and movement

* Two-handed asymmetrical: hands differ in handshape
and/or movement

C Used Prompts

Phonological Form Prediction Instructions:

Handshape? Hl=all fingers closed to a fist,
H2=all fingers extended, H3=all fingers curved
or clawed, H4=one (selected) finger extended,
H5=one (selected) finger curved or clawed, H6=
two or more (selected) fingers extended, H7=two
or more(selected) fingers curved or clawed)

Location? Major sign location? Answer with
only one: L1, L2, L3, L4, L5 (L1=hands touching
head/face, L2=hands touching torso, L3=hands
touching arm, L4=hands touching weak/passive
hand, L5=hands in front of the body or face)

Path Shape? Movement path shape? Answer
with only one: Hold, Straight, Arched, Circular.
(Hold=no path or direction, Straight=move in a
straight line, Arched=move in an arched line, Cir-
cular=move in a circular path)

Path Repetition? Answer with only one: Sin-
gle, Repeated. (Single=one movement, Re-
peated=multiple or repeated movements)

Handedness? Answer with only one: One-
handed, Two-handed symmetrical, Two-handed
asymmetrical. (One-handed=only one hand is
used in the sign, Two-handed symmetrical=two
hands are used but the hands move together and
have the same handshape, Two-handed asymmet-
rical=two hands are visible, but one hand does not
move and the hands have different handshapes)

Transparency (open-set over 96 glosses) and Transparencys
(10-choice Instructions)

What does this sign resemble? Look at the form
and movement of the sign. Choose the most likely
option from these possibilities: <OPTIONS>. An-
swer with only the exact word from the list.

Iconicity Rating Instructions:

This sign means: <MEANING>. Some signs are
iconic and some are arbitrary. Find visual re-
semblances between the meaning and the form
of the sign. How much does the sign look like
“<MEANING>"? Answer with only one number:
1,2,3,4,5,6,7 (1=not at all, 7=exactly).



D Iconicity Type Examples
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Combined iconic Object-based iconic Action-based iconic Arbitrary

SPIDER: The wiggling BUTTERFLY: two hands TO-SMS: thumb and ELECTRICITY: hand
motion of the hands mirror the referent’s fingers enact the configuration and path
conveys the spider’s wings. typing/texting action. show no transparent visual
movement, while the resemblance; the

curved fingers depict its form—meaning link is
legs. purely conventional.

Figure 6: Representative frames illustrating the four iconicity categories. Each pair of frames shows how the sign
fits its category.

E Full Results Tables for Phonology

Model Handshape Location Path Shape Path Repetition ~Handedness Mean
Human baseline (hearing non-expert) 0.698 0.823 0.677 0.833 0.938 0.794
Gemini-2.5-Pro 0.677 0.865 0.417 0.646 0.927 0.706
GPT-5 0.625 0.740 0.468 0.708 0.948 0.698
GPT-40 0.417 0.865 0.365 0.562 0917 0.625
Qwen2.5-VL-72B 0.490 0.771 0.344 0.563 0.823 0.598
LLaVA-OV-Qwen2-72B 0.302 0.677 0.438 0.479 0.865 0.552
Qwen2.5-VL-32B 0.417 0.719 0.354 0.563 0.708 0.552
VideoLLaMA2-72B 0.323 0.729 0.188 0.563 0917 0.544
Gemma-3-27B 0.333 0.781 0.302 0.552 0.708 0.535
LLaVA-Video-72B-Qwen2 0.271 0.646 0.323 0.510 0.885 0.527
Qwen2.5-VL-7B 0.427 0.385 0.188 0.552 0.531 0.417
LLaVA-OV-Qwen2-7B 0.167 0.167 0313 0.604 0.802 0.411
LLaVA-Video-7B-Qwen2 0.260 0.135 0.313 0.417 0.583 0.342
VideoLLaMA2-7B 0.083 0.135 0.188 0.000 0.198 0.121
Random baseline 0.143 0.200 0.250 0.500 0.333 0.285

Table 8: Phonological form prediction accuracy by model and phonological subtasks, with random and human
baselines, and mean accuracy across all subtasks.



F Additional Figures
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Figure 7: Correctly guessed signs from sign video only (>3 models) in the Transparencys Task.

Location

Path Shape
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Path Repetition
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Figure 8: Zero-shot accuracy of the top 6 performing models (3 open, 3 closed) across five phonological features,
averaged over 96 signs. Solid colored lines are models; black dashed and grey dotted are the human non-expert and
random baselines, respectively.
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