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Abstract

Creating a virtual avatar with semantically coherent
gestures that are aligned with speech is a challenging
task. Existing gesture generation research mainly fo-
cused on generating rhythmic beat gestures, neglecting
the semantic context of the gestures. In this paper, we
propose a novel approach for semantic grounding in co-
speech gesture generation that integrates semantic in-
formation at both fine-grained and global levels. Our
approach starts with learning the motion prior through
a vector-quantized variational autoencoder. Built on
this model, a second-stage module is applied to auto-
matically generate gestures from speech, text-based se-
mantics and speaker identity that ensures consistency
between the semantic relevance of generated gestures
and co-occurring speech semantics through semantic
coherence and relevance modules. Experimental re-
sults demonstrate that our approach enhances the real-
ism and coherence of semantic gestures. Extensive ex-
periments and user studies show that our method out-
performs state-of-the-art approaches across two bench-
marks in co-speech gesture generation in both objec-
tive and subjective metrics. The qualitative results of
our model, code, dataset and pre-trained models can be
viewed at https://semgesture.github.io/.

1. Introduction

Human language is inherently multimodal, with ges-
tures and speech complementing each other to con-
vey pragmatic and semantic information [21, 35]. Co-
speech gestures are non-verbal cues that are uniquely
related to co-occurring speech, pragmatically, seman-
tically, and temporally. For example, representational
iconic gestures that visually express the semantic con-
tent of speech and interact with spoken language [13,
14, 19, 21, 41]. A long-standing goal in Computer Vi-
sion is to create digital humans that use non-verbal cues
in sync with speech. Gesture generation—synthesizing
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Figure 1. SemGes integrates audio, text-based semantics,
and speaker identity to produce both contextually relevant
(discourse-level) and fine-grained (local) gestures. A seman-
tic coherence module aligns text and motion embeddings. The
multimodal consistency loss synchronizes the quantized mul-
timodal representations to match the quantized learned motion
features for final speech-driven semantics-aware gesture gen-
eration. The semantic relevance loss selectively emphasizes
gestures with semantic annotations.

movements from co-occurring speech, masked motion,
or speaker identity—has advanced to enhance Al agents’
expressiveness and realism [29]. However, much of the
focus has gone into generating rhythmic beat gestures
with limited semantic information, leaving represen-
tational gestures that convey semantic messages (e.g.,
iconic) less explored [29, 40].

Generating spontaneous and semantically rich ges-
tures from speech comes with multiple challenges. First,
it requires capturing global discourse-level information
and local fine-grained details (e.g., salient words) to
generate speech-driven gestures that reflect the intended
meaning and align with speech temporally and seman-
tically. Second, existing methods often generate repeti-
tive and short sequences that do not span the full range
of expressive motions required for natural communica-
tion. To leverage semantics when generating gestures,
researchers have attempted to align motion with speech
representations at a global level, e.g., by leveraging pre-
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trained semantic representations such as CLIP [58] or
focusing on semantically important keywords [0, 57].
Nonetheless, they often fail to (i) unify global and lo-
cal semantic modelling within a single framework and
(ii) exploit the relevance of the semantic information in
guiding gesture generation [27]. At the same time, raw
audio features and speaker identity are relevant to the
timing and style of gestures. In this paper, we address
these limitations by integrating speech, speech seman-
tics, and gesturing style, exploiting semantic informa-
tion at different levels.

Specifically, we propose a two-stage framework,
namely, SemGes, that integrates speech, text-based se-
mantics, and speaker identity into a unified gesture-
generation model (see Figure 1). In stage 1, we build
motion prior of holistic gestures (i.e., body and hands)
by training a vector-quantized variational autoencoder
(VQ-VAE) to learn an efficient, compositional motion
latent space. This stage results in a robust motion en-
coder & decoder and quantized codebooks that can re-
construct naturalistic gestures while allowing the reuse
of learned codebook entries. Stage 2 leverages the
learned motion priors to drive gesture synthesis by fus-
ing three modalities using a cross-modal Transformer
encoder: (i) text-based semantics, (ii) raw-audio speech
features, and (iii) speaker identity for style consis-
tency. We impose a semantic coherence loss that aligns
text-based embeddings with the VQ-VAE motion latent
space and a semantic relevance loss that emphasises rep-
resentational gestures (e.g. iconic and metaphoric ges-
tures). A multimodal consistency objective ensures the
fused multimodal representations are compatible with
the learned motion codebooks, enabling the generation
of gestures that are both semantically rich and visually
natural. Finally, we introduce a simple but effective
long-sequence inference strategy that smoothly com-
bines overlapping motion clips for extended durations.
To summarize our contributions,

* We introduce a novel framework, SemGes, that first
learns a robust VQ-VAE motion prior for body and
hand gestures, and then generates gestures driven by
fused speech audio, text-based semantics, and speaker
identity in a cross-modal transformer.

* Our method jointly captures discourse-level context
via a semantic coherence loss and fine-grained rep-
resentational gestures (e.g., iconic, metaphoric) via a
semantic relevance loss.

* We propose an overlap-and-combine inference algo-
rithm that maintains smooth continuity over extended
durations.

» Extensive experiments on two benchmarks, namely,
the BEAT [27] and TED Expressive [33] datasets
show that our method outperforms recent baselines in
both objective metrics (e.g., Fréchet Gesture Distance

(FGD), diversity, semantic alignment) and user judg-
ment of generated gestures.

2. Related Work

Data-driven Co-Speech Gesture Generation. Cur-
rent gesture generation approaches are based on gen-
erative deep neural networks. These approaches use
advanced models such as Transformers [28], Genera-
tive Adversarial Networks [23], Normalizing Flows [18,
30], Vector Quantized Variational Autoencoder(VQ-
VAE) [16] and Denoising Diffusion Probabilistic Mod-
els [47]. In addition, researchers have explored the im-
pact of different model inputs on the naturalness and ap-
propriateness of generated gestures. Various modal in-
puts have been used, such as text [15], audio [50, 59],
image [32, 39], and speaking style [3]. For a compre-
hensive survey, we refer to Nyatsanga et al. [40]. Al-
though there have been significant improvements in this
field, current methods fall short in generating semanti-
cally grounded gestures at a fine-grained level. In other
words, while the generated motions look convincing at
first glance, they do not match well with the meaning of
the text, or they mostly focus on beat-type gestures.

Semantics-aware Co-Speech Gesture Generation.
A group of work focused on semantics-aware ges-
ture generation where the semantic information is han-
dled in two ways: global semantics and local seman-
tics. Methods that focus on global semantic information
[10, 22, 58] align gestures with text or audio, but they
fall short in generating gesture types matching the se-
mantic context, such as iconic, metaphoric and deictic
gestures. To capture a wider range of semantic gestures,
works like [5, 6, 27] adopt local semantic-aware mod-
elling by integrating the semantic salient words to the
neural network. However, these approaches often fail
to ensure that the generated gestures align with both the
broader audio or textual context and a combination of
global and local semantics. Liang et al. [26], Vof} and
Kopp [49] incorporate both global and local semantics,
however, they require extensive annotations. Recently,
Zhang et al. [57] employed a generative retrieval frame-
work based on LLMs to address the sparsity problem
in datasets with semantic gestures. However, they do
not explicitly model the different types of gestures [27]
or gesture phases [12] grounded in linguistic research.
Moreover, there is still not enough understanding of the
impact of different annotations and fine-grained seman-
tics.

Substantial research [6, 28, 57, 58] focused on
two-stage latent space generative modelling to over-
come the limitations of co-speech gesture generation
and to generate more naturalistic and diverse gestures.
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Figure 2. We pre-train two VQ-VAEs by reconstructing body
and hand motions with a dedicated codebook for each.

These approaches first learn a latent space and then
model gestures probabilistically, effectively integrating
the strengths of different methods in different stages.
Liu et al. [28], Zhang et al. [57] capture complex de-
pendencies in the latent space using VQ-VAE while Zhi
et al. [58] employs CLIP [46, 56] to align text and mo-
tion embeddings. Ao et al. [6] introduces a diffusion-
based model that leverages semantic awareness, while
Liu et al. [28] utilizes a transformer-based approach to
generate holistic body gestures. In contrast with two-
stage generative modeling approaches, end-to-end meth-
ods such as [5, 59], are prone to jittering artifacts, espe-
cially in hand-motion generation.

Our model contributes to the research line on
semantics-aware co-speech gesture generation by taking
into account both global and local semantics. Inspired
by the previous work, we employ a two-stage latent
space generative modelling for high-quality motion rep-
resentation. We learn semantic coherence between text
and gestures globally with cosine similarity. Moreover,
our model takes into account the semantic relevancy of
gesture types with minimally required annotations. In
contrast with other semantic learning models, we focus
on annotations with different gesture types embedded in
linguistic research. Our work is closest to CAMN [27] in
that sense; however, CAMN does not include semantic
coherence learning by aligning text and gestures’ latent
space globally.

3. Methodology

We propose a two-stage approach that generates co-
speech gestures by grounding them in raw speech, text-
based semantics, and speaker identity. In Section 3.1,
we introduce a VQ-VAE encoder-decoder that learns a
robust motion prior. Section 3.2 details our gesture syn-
thesis and inference pipeline based on speech, seman-
tics, and identity.

Problem formulation. Our goal is to generate hand
gestures G™ = (g7, ..., g%) € RT*” and body gestures
G’ = (¢b,...,9%) € RT*/, where T is the number of
time steps and J the number of joints (e.g., 38 for hands,
9 for body). Each motion vector g/ or g? is encoded in
a Rot6D representation, capturing joint rotations at time
t.

To model human motion of body and hands, we first
learn a motion generator M, (Stage 1), which synthe-
sizes a plausible motion sequence:

G~ My(gi,...gr)|. (1)

arg min
Mg

Next, we condition on (i) the raw input audio A =
(ai,...,ar), (i) the speaker identity embedding I, and
(iii) the text-based semantic embeddings of the speech
S = (s1,...,s7). Our second-stage model M, ; ; uses
these inputs to generate a latent sequence that the motion
generator M, then decodes into naturalistic gestures:

arg min GfMg(Ma,S,,;(A,S,I))H. o)

3.1. Stage 1: Learning Efficient Codebooks &
Compositional Motion Priors

Realistic co-speech gestures require modelling the se-
quential motion of both body and hand joints. Rather
than learning a single representation for the entire body,
we adopt a compositional approach, using a discrete
codebook of learned representations specific to each part
(hands & body). Any gesture motion can then be repre-
sented by selecting appropriate codebook entries. Fol-
lowing [28, 48, 53], we employ a VQ-VAE architecture
(see Fig. 2) with encoder &,, and decoder D,,,. Given
hand motion G" € R7*” and body motion G® € RT*7,
the encoder produces latent vectors 2" and 2, which are
quantized by selecting the nearest entries in the code-
books. Formally,

q(2) = arg min |27 — 2°|, 3)
z'eZ

where z* are the learned codebook entries, and 27 de-
notes an element of the latent vector for either hand or
body. We train the VQ-VAE via a straight-through gra-
dient estimator, minimizing:

2

Lvovae = ||g — EHZ + g - éHz +lg-¢
+ [se[E(g)] — a(®)|® + |E(g) — sgla(®)]],

where the first three terms reconstruct joint positions,
velocities, and accelerations, and the last two terms im-
plement the VQ-VAE commitment loss [48].

By the end of this stage, we have motion (m) en-
coder (£,,,), decoder (D,,,) and codebooks (Quant™(+))
for hands and body. In the next section (Section 3.2),
we show how this discretized motion of hands and body
guides speech, semantics and speaker identity-driven
generation to produce realized co-speech gestures.

“)

3.2. Stage 2: Speech and Identity Driven Seman-
tic Gesture Generator

This stage focuses on generating gestures conditioned
on three inputs: speech embeddings, text-based seman-
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Figure 3. SemGes employs three training pathways: (1) Global semantic coherence, which minimizes latent disparities between
gesture and text encoders; (2) Multimodal Quantization learning, where integrated multimodal representation codes are aligned
with quantized motion to decode them into hand and body movements; and (3) Semantic relevance learning, which emphasizes

semantic gestures.

tic embeddings, and speaker identity. As illustrated in
Figure 3, the second-stage architecture has three main
modules, which we elaborate on in the following sub-
sections.
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Figure 4. Semantic Coherence Embedding Learning.

3.2.1. Semantic Coherence Embedding Learning

To align text-based semantics with motion embeddings,
we introduce a shared embedding space for both mo-
tion priors and speech transcripts. Specifically, we em-
bed word tokens using a pre-trained FastText model [8],
then feed these embeddings into a trainable text-based
semantic encoder &£,. At the same time, we use the
pre-trained motion encoder &, from Stage 1 to encode
ground-truth gesture sequences. Thus, for a batch of
paired (gesture, transcript) samples, we get:

25 —¢g.(9), 2M=¢gr@h, zb=¢g (@), 5)

where S is the tokenized speech transcript, and G"
and G® correspond to the ground-truth hand gesture se-
quence and body gesture sequence, respectively. Z" and

Z" represent the hand and body ground-truth motion en-
codings from Stage 1, and Z° denotes the text-based se-
mantic encoder output.

Semantic Coherence Loss. We maximize the similar-
ity of correct (gesture, transcript) pairs and minimize
it for mismatched pairs, enforcing semantic coherence.
This aligns gestures and textual semantics in a common
space while keeping &,, frozen, as illustrated in Fig-
ure 4. We impose the semantic coherence constraint
separately on both hand and body movements to align
gestures with transcripts in the shared embedding space.
Specifically, we introduce two distinct cosine similarity
losses: one between the text encoder output and the hand
motion latent encoding and another between the text en-
coder output and the body motion latent encoding. For-
mally, we minimize:

h s b s
Lsemantic-coherence = 1 — cos(Z7, 27) + 1 —cos(27, 2%), (6)

where the function cos(-, -) measures cosine similarity.

3.2.2. Crossmodal Integration

SemGes supports multi-modal inputs in the second
training stage by combining audio features and speaker
identity with semantic text embeddings using a Trans-
former encoder with self and cross-attention layers
(see Figure 3). We begin by extracting HuBERT fea-
tures [20] from raw speech (keeping the HUuBERT en-
coder frozen). We concatenate audio features Z¢ and
speaker embeddings Z°, resuling in Z”, which we feed
into a self-attention layer.

Next, we use a cross-attention layer that takes Z"
as the query and the motion-aligned text-based seman-
tic features Z° as the key-value pair. The final hidden
representation Z7 serves as the multimodal latent code



that drives gesture synthesis when passed to our vector
quantization and VQ-VAE-based motion decoder, which
is learned in our first stage (see the yellow box in Fig-
ure 3).

Multimodal Quantization Consistency Loss.
SemGes quantizes the multimodal latent code us-
ing separate hand and body codebooks. To align this
code with the ground-truth motion latent codes, we
apply independent quantization consistency losses for
each component. Specifically, the quantization loss is
defined as:
Lanmiaion = |Quant” (27) — Quant™ (2")|" +

(Quant(27) - QuantZ

where Quant”(-) and Quant®(-) denote the quantiza-
tion functions for the hand and body codebooks, respec-
tively.

The multimodal quantization loss aligns the inte-
grated latent code Z/ with the learned motion code, a
critical step since gesture synthesis is obtained through
the quantized multimodal representation. Specifically,
Z7 is vector-quantized using separate hand and body
codebooks before being decoded by their respective VQ
decoders. This process ensures that both hand and body
movements contribute effectively to the final output.
Formally, the generated gestures are given by:

G =a"@G" = D (Quant™(27)) ® DY, (Quant®(27)), ®)

where @ denotes concatenation, jointly synthesizing
hand and body motions (i.e. G).

3.2.3. Gesture Semantic Relevance Loss

To prioritize the generation of semantically meaningful
gestures (e.g., iconic, metaphoric, or deictic), which are
less frequent than beat gestures, we introduce a seman-
tic relevance loss. This loss emphasizes semantic anno-
tations while preventing over-penalization of minor de-
viations. Formally, it is defined as:

Lsemantic-relevance = E[/\ v (G- G)]a )]

where \ is the annotation relevance factor, and ¥(-) is
a piecewise function that applies a quadratic penalty for
small errors and a linear penalty for larger ones:

3(G-6)%
()/(‘G - G| - %a), otherwise,

if|G - G| < a,
10

T (G- G) ={
with o = 0.01.

Combined Objective Functions. Finally, the overall
objective is:

LsemGes = L ic-cot + L ic-rel + L ization 5 (11)

Algorithm 1 Long Gesture Sequence Algorithm

Require: Audio A, aligned speech transcript S, and
speaker ID Z; Pre-trained codebooks and motion de-
coder (Stage 1)

Ensure: Long-sequence gesture M

1: Partition (A, S, Z) into clips {(A¢, S, Z.)}&,
2: Compute latent representation: zr —

Encode(A4,S,T)

Quantize: Z¢ « VectorQuantize(Z/)

Decode initial clip: M; <« Dec(Z¢)

for each clipc = 2to C do
Set first 4 frames of ]\ZI'C to the last 4 frames of

M c—1
Generate remaining frames of M,

8: end for

9: return M

AN A

~

which jointly optimizes the model to generate gestures
that are semantically coherent at both global and fine-
grained levels while remaining faithful to the Stage 1
motion prior.

3.3. Inference of Long Gesture Sequences

Generating long sequences of gestures is challenging
due to the need to maintain coherence and smooth
transitions. Our Long-Sequence Gesture Motion algo-
rithm (Alg. 1) addresses these challenges by partition-
ing the input speech, transcript, and speaker identity
into aligned clips. For each clip, a multimodal latent
representation is computed using our cross-modal en-
coder, vector-quantized via the Stage 1 codebooks, and
decoded into gesture motions. Overlapping 4-frame seg-
ments between clips provides continuity, resulting in ex-
tended, naturalistic gesture sequences.

4. Experimental Setup
4.1. Datasets

Our proposed methodology is evaluated on two bench-
marks, namely, BEAT [27] and the TED expressive
dataset [33]. The BEAT dataset consists of 76 hours
of multimodal recordings, which include speech au-
dio recordings, speech transcriptions, and, more impor-
tantly, motion data collected from 30 participants, lever-
aging Motion Capture (MOCAP) technology. The par-
ticipants expressed emotions in eight distinct scenar-
ios across four languages. The motion data contains
joint rotation angles, which were designed for consis-
tency across varying body sizes. The TED Expressive
dataset [33] is segmented from TED Talk videos into
smaller shots based on scene boundaries. Liu et al. [33]
extracted each frame’s 2D human pose using OpenPose
BEAT [9]. Using these 2D pose priors, ExPose [43] was



Table 1. Comparison of SemGesGen with other methods on the BEAT and TED-Expressive datasets. For BEAT, we compare with
CaMN [27], DiffGesture [59], LivelySpeaker [58], and DiffSheg [10]. The same methods are evaluated on TED-Expressive. SRGR
is not applicable (denoted with —) for TED-Expressive as it does not contain annotations for semantic relevance of gestures.

BEAT | TED-Expressive
Method FGD| BC1 Diversity ] SRGR1 | Method FGD| BC1! Diversity
CaMN [27] 8.510 0.797 206.789 0.231 CaMN [27] 7.673  0.642 156.236
DiffGesture [59] 9.632 0.876 210.678 0.106 DiffGesture [59] 9.326  0.662 119.889
LivelySpeaker [58] 13.378 0.891 214.946 0.229 LivelySpeaker [58]  8.145  0.691 119.231
DiffSheg [10] 6.623  0.922 257.674 0.250 DiffSheg [10] 8.457  0.712 108.972
SemGes (Ours) 4.467 0453 305.706 0.256 H SemGes (Ours) 7.263 0.671 302.772

employed to annotate the 3D upper body keypoints, in-
cluding 13 upper body joints and 30 finger joints. Both
datasets’ training and validation samples are divided into
34-frame clips.

Cross-Validation. We evaluate our approach on the
BEAT dataset, following the protocol in [27], where the
data is randomly split into a 19:2:2 ratio for training, val-
idation, and testing. Similarly, for the TED Expressive
dataset, we adapt the protocol in [33], using a random
split of 8:1:1 for training, validation, and testing.

Implementation Details. The details of the model ar-
chitectures and training are provided in Section 2 of the
Supplementary Materials.

4.2. State-of-the-Art Baselines

We compare SemGes against a set of representative
state-of-the-art models that focus on semantic-driven
gesture generation. The selected models achieved
strong performance on the BEAT and TED-Expressive
datasets, making them suitable for a fair comparison
with our method. The selected models are as follows:

1. Cascaded Motion Network(CaMN) [27] is the cur-
rent benchmark model for the BEAT dataset. CaMN
is based on LSTMs and integrates multiple input
modalities, including audio, text, facial expressions,
and emotion. Additionally, like SemGes, it lever-
ages semantic relevance annotations to enhance ges-
ture generation.

2. DiffSHEG [10] is a state-of-the-art diffusion-based
model for real-time speech-driven holistic gesture
generation. It is conditioned on noisy motion, au-
dio, and speaker ID. DiffSHEG introduces a Fast
Out-painting-based Partial Autoregressive Sampling
method to efficiently generate arbitrary-length se-
quences in real time.

3. LivelySpeaker [58] generates semantically and
rhythmically aware co-speech gestures by leverag-
ing an MLP-based diffusion model. The model con-
ditions gesture generation on text, noised motion,

speaker ID, and audio to enable text-driven gesture
control while incorporating global semantics.

4. DiffGes [59] models the diffusion and denois-
ing processes within the gesture domain, enabling
the generation of high-fidelity, audio-driven gestures
conditioned on both audio and gesture inputs. Sev-
eral recent studies[6, 26] have also demonstrated
strong performance in this area.

We exclude certain models from our comparison. For
instance, SEEG [26] and [57] rely on additional data an-
notations (e.g., Semantic Prompt Gallery or ChatGPT-
generated annotations) that are not uniformly available
In addition, other works, such as Ao et al. [6], Pang
et al. [42], Zhang et al. [57], are excluded from our
analysis due to the inaccessibility of their codebase.
VoB3 and Kopp [49] is omitted due to its high compu-
tational cost and the unavailability of annotations.Liu
et al. [31, 34], Mughal et al. [36, 37], Ng et al. [38], Yi
et al. [54] are excluded as they primarily focus on holis-
tic gestures with face and mesh data, which fall out-
side the scope of this work. Similarly, Chhatre et al.
[11], Qi et al. [44] are excluded, as their emphasis lies
in emotion-driven gesture generation rather than the se-
mantic aspects. Furthermore, Ahuja et al. [1, 2], Alexan-
derson et al. [4], Habibie et al. [17], Liu et al. [33], Sun
et al. [45], Yang et al. [51], Ye et al. [52] are omitted
due to their lack of relevance to semantic-driven gesture
generation.

5. Quantitive Objective Evaluations

Evaluation Metrics. We employ four standard objec-
tive metrics for evaluating the quality of gesture gen-
eration, namely, Fréchet Gesture Distance (FGD) [55],
Beat Consistency Score (BC) [25], Diversity [24], and
Semantic-Relevant Gesture Recall (SRGR) [27].

FGD measures how the generated gestures resemble
real motion distributions by embedding sequences into
a latent space via a pre-trained autoencoder. In contrast,
BC focuses on synchronization with speech, measuring
the alignment between speech onsets (audio beats) and
motion beats, which are identified as velocity minima in



Table 2. Ablation studies evaluating the contributions of key components in SemGes on the BEAT and TED-Expressive Datasets.
For BEAT, performance is measured using FGD (lower is better), BC, Diversity, and SRGR, while for TED-Expressive, SRGR is

not applicable (denoted as —).

BEAT ‘ ‘ TED-Expressive
Model Variants FGD| BC?! Diversity? SRGR1 || Model Variants FGD| BC1? Diversity 1
Baseline (VQVAE) 10.348  0.564 198.568 0.176 Baseline (VQVAE) 10.682 0.612 114.692
w/o Semantic Coherence Module ~ 8.053  0.556 249.550 0.180 w/o Semantic Coherence Module ~ 7.924  0.623 109.256
w/o Semantic Relevance Module 7.549 0.573 245.319 0.195 w/o Semantic Relevance Module - - -
w/ SpeechCLIP Encoder 6.787  0.468 289.621 0.245 w/ SpeechCLIP Encoder 7.341  0.605 245.680
SemGes (Ours) 4467 0453 305.706 0.256 SemGes (Ours) 7.263  0.671 302.772

upper-body joints (excluding fingers). Meanwhile, Di-
versity captures the variability of generated motions by
computing the average L1 distance between pairs of N
generated clips. Finally, SRGR assesses semantic rele-
vance by determining how well generated gestures align
with the annotated semantic gestures. Further details on
the objective metrics are included in the Supplementary
Materials (Section 1).

Comparisons with Other Models. Table | compares
the performance of our approach against four baseline
methods across four evaluation metrics. As highlighted
in the table, SemGes outperforms the baselines in FGD,
Diversity, and SRGR.

For the BEAT dataset, our approach achieves the
highest SRGR, which we attribute to the exploitation
of semantic relevance information in our training ob-
jectives. In addition, our approach shows a significant
improvement in FGD and Diversity, indicating a closer
alignment with the ground truth gesture distribution and
a broader range of generated gestures compared to the
second-best baselines. The performance on the Beat
Consistency (BC) metric is lower for our method. This is
expected given our focus on improving semantic aware-
ness of the generated gestures rather than optimizing for
strict temporal alignment between rhythmic beat ges-
tures and speech. In addition, the BC metric can be
sensitive to rapid, jittery movements; even minor mo-
tion artefacts may be mistakenly counted as additional
beats, thereby increasing the BC score artificially- a phe-
nomenon also observed in the diffusion-based baselines,
as further illustrated in our supplementary video.

We evaluate how our model handles the trade-off be-
tween semantic and beat scores by testing the model on
beat-dominant gestures (without semantic content). The
results show a significantly higher Beat score (0.689)
than the full dataset Beat score (0.453). This confirms
rhythmic consistency in beat-focused contexts. We pro-
vide additional evaluation in the supplementary materi-
als (Section 3) to show how the model handles difficult
cases (such as noisy speech or misaligned speech).

Note that the TED Expressive dataset lacks annota-
tions for gesture semantic relevance, so SRGR is not

applicable, and the semantic relevance loss was omit-
ted during training. Nevertheless, SemGes produces di-
verse, naturalistic gestures on TED Expressive, outper-
forming baselines in FGD and Diversity metrics.

Ablation Study. We evaluate the contributions of key
components in SemGes through ablation experiments.
First, we assess a baseline VQ-VAE model (Stage 1
only), which uses two stacked encoder-decoder blocks
and an MLP. In this experiment, we test its ability to gen-
erate gestures, conditioned on audio, masked motion,
and speaker identity. As shown in Table 2, this base-
line underperforms compared to state-of-the-art meth-
ods (Table 1). As a result, we motivate our two-stage
design where the VQ-VAE is reserved to learn the mo-
tion latent space and Stage 2 leverages speech and iden-
tity conditioning to generate gestures.

Next, we examine Stage 2 by removing its compo-
nents: (i) the Semantic Coherence Loss, (ii) the Seman-
tic Relevance Loss, and (iii) by replacing the HuBERT-
based speech encoder with SpeechCLIP. Results in Ta-
ble 2 show that removing either the Semantic Coherence
or Relevance Loss degrades FGD, Diversity, and SRGR
scores, highlighting their roles in aligning gesture repre-
sentations with textual semantics and capturing semantic
importance. In addition, replacing the speech encoder
results in marginal gains. The semantic encoder is fixed
as FastText, which we believe is sufficient to capture the
necessary semantic information [7]. Overall, these re-
sults confirm the importance of each module in generat-
ing semantics-aware gestures.

6. Qualitative & Subjective Evaluations

Visualization Comparisons. Before presenting the
subjective ratings of the generated gestures, Figure 5
provides a visual comparison between the ground truth,
results from our approach and two baseline models. We
use examples from the BEAT dataset. It is clear from the
figure that our approach not only achieves better speech-
gesture alignment but also produces gestures that are
more naturalistic, diverse, and semantically aware. For
example, while CaMN generates smooth movements, its
gestures tend to be slower and less varied compared to
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Figure 5. Comparisons with baselines and ground truth gestures. Compared to the baseline method, our approach generates
gestures that are aligned with speech content (semantics). For instance, when the speaker says “remix”, our method produces
gestures where the character raises both hands to emphasize the word before gradually lowering them—a movement that other
methods fail to achieve. Similarly, when uttering “first”, our method generates a raised hand gesture, producing an iconic gesture.

our model. Additionally, the baseline methods show
varying degrees of jitter—DiffGesture shows the high-
est jitter, followed by LivelySpeaker and DiffSheg, with
CaMN displaying the least. Although CaMN includes
semantic information, our approach strikes a more ef-
fective balance, generating gestures that align with ac-
tual motion, as shown also with the objective metrics.
Based on these qualitative observations, our subsequent
rating study focuses on evaluating gestures produced by
the ground truth, our model, CaMN, and DiffSHEG.

User Ratings of Generated Gestures. We conducted
a user study using 40-second video clips from the BEAT
test set, featuring subjects narrating six topics. Thirty
native English speakers from the United Kingdom and
the United States participated, with an average age of
36 + 20 years and a female-to-male ratio of approxi-
mately 2:1. Each participant evaluated 24 videos gen-
erated by the ground truth, CaMN, DiffSHEG, and our
model over a study duration of that lasted on average
27 £ 5 minutes. For data quality, participants were re-
quired to pass attention verification questions, i.e., cor-
rectly answering at least two out of four questions re-
garding the narration topic. Participants rated the videos
on three criteria: naturalness, diversity, and alignment
with speech content and timing on a scale from 1 to
5. The videos were presented in a randomized order to
avoid bias. In Section 3 of the Supplementary Materi-
als, we provide screenshots and more details on the user
study and interface.

Figure 6 shows that ground-truth gestures received
an average rating of 4 across all metrics, establishing an
upper bound and validating the participant survey. Our
model received the highest ratings among the generated
gestures, significantly outperforming CaMN and Dift-
SHEG in naturalness, synchronization, and diversity (in-
dicated by the in Figure 6). These results prove that our
approach produces gestures that are more natural, better
aligned with speech, and more diverse than those gener-

ated by SOTA baselines.
Ground-Truth Our Model CAMN DiffSEHG
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Figure 6. Average ratings of users for ground truth ges-
tures and gestures generated through our approach, CAMN,
and DiffSHEG. The bars illustrate the average user ratings
across three metrics: naturalness, diversity, and alignment with
speech content and timing. Statistical t-tests show that our ap-
proach received significantly higher ratings than CAMN and
DiffSHEG, with p < 0.05.

7. Conclusion

We proposed SemGes, a novel two-stage approach to se-
mantic grounding in co-speech gesture generation by in-
tegrating semantic information at both fine-grained and
global levels. In the first stage, a motion prior generation
module is trained using a vector-quantized variational
autoencoder to produce realistic and smooth gesture mo-
tions. Building upon this model, the second stage gen-
erates gestures from speech, text-based semantics, and
speaker identity while maintaining consistency between
gesture semantics and co-occurring speech through se-
mantic coherence and relevance modules. Subjective
and objective evaluations show that our work achieves
state-of-the-art performance across two public bench-
marks, generating semantics-aware and diverse gestures.
Future direction and limitations are discussed in Section
5 of the Supplementary Materials.
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