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Abstract— Much of the focus on emotion recognition has gone
into the face and voice as expressive channels, whereas bodily
expressions of emotions are understudied. Moreover, current
studies lack the explainability of computational features of
body movements related to emotional expressions. Perceptual
research on body parts’ movements shows that features related
to the arms’ movements are correlated the most with human
perception of emotions. In this paper, our research aims
at presenting an explainable approach for bodily expressed
emotion recognition. It utilizes the body joints of the human
skeleton, representing them as a graph, which is used in Graph
Convolutional Networks (GCNs). We improve the modelling of
the GCNs by using spatial attention mechanisms based on body
parts, i.e. arms, legs and torso. Our study presents a state-
of-the-art explainable approach supported by experimental
results on two challenging datasets. Evaluations show that
the proposed methodology offers accurate performance and
explainable decisions. The methodology demonstrates which
body part contributes the most in its inference, showing the
significance of arm movements in emotion recognition.

I. INTRODUCTION

A growing body of studies demonstrated that varia-
tions of body movements convey specific information about
people’s emotions [1], [2]. For example, Dael et al. [2]
showed that features of body movements such as the amount
of movement, movement speed, force, fluency, size, and
height/vertical position are strong determinants of potency
and arousal. In addition, Dael et al. [1] found that several pat-
terns of body movements occur when portraying emotions,
which helps in emotion differentiation. These studies showed
that body movements and gestures could be an integrated
part of a unified nonverbal emotion communication frame-
work since bodily expressions can modulate the conveyed
information from the voice and face.

Recent advances in machine learning have brought tremen-
dous improvements to the fields of HCI and affective
computing. Usually, those improvements rely on a massive
amount of annotated data while offering few insights into
their predictions. Explainable Artificial Intelligence (XAI)
aims to interpret AI methods to shed light on important
aspects that drive models’ decisions. Understanding compu-
tational models is of great interest in all scientific disciplines.
For example, in natural sciences, where machine learning is
heavily used, transparency, interpretability, and explainability
of used models are essential to increase scientific discovery

to have consistency with domain knowledge [3].
The literature on Emotion Recognition from Bodily Ex-

pressions (ERBE) points to the fact that there is no consistent
quantization of body movement and its characteristics and
relations to bodily expressed emotions. For example, a major
challenge in the explainability of bodily expression recogni-
tion is the lack of movement coding systems, such as the one
used for facial expressions, the Facial Action Coding System
(FACS) [4]. For instance, there is not a direct correspondence
between body movements and affective expressions [1], [2],
[5]. Moreover, the relationship between these components is
not transcultural and transcontextual, as they can be gender
and age-specific as well as idiocentric [5]. Nonetheless,
research suggests that there should be a mapping between
descriptors and movement characteristics such as joints’ po-
sitions and velocity. For example, perceptual studies in psy-
chology point to the existence of movement features which
contribute to emotion recognition. For instance, a study by
De Meijer [5] found that the hands and arms movement
are the most significant for distinguishing between affective
states. In addition, trunk movement, degree of openness,
force, and pace were found to be relevant cues. However, a
systematic mapping between computational features of body
movements and affective states is still lacking.

This paper aims to fill the gap between explaining how
body parts’ movements (and their computational features)
are related to emotions expressed by subjects. In particular,
our study addresses the following research questions: Which
body parts’ movements contribute the most to emotion
recognition and how can body joints’ spatio and temporal
dynamics be exploited and explained for emotion recog-
nition? We utilize sequences of body joints that represent
the dynamics of the human body skeleton. The dynamics
of human body skeletons convey significant information for
activities, actions, and emotions. Sequences of body joints
contain spatio-temporal patterns that can be exploited to
capture body movements [6], [7]. Recently, Spatio-Temporal
Graph Convolutional Networks (ST-GCNs) emerged as a
state-of-the-art family of methods to capture body dynamics
in recognizing actions and body gestures from skeletal data
[6]. For these reasons, we propose an explainable approach,
motivated by the success of GCNs to capture the spatio-
temporal dynamics of body joints’ movements. To summa-
rize, in this study, our contributions are as follows:978-1-6654-3176-7/21/$31.00 ©2021 IEEE



• We present an explainable approach for bodily expression
recognition based on ST-GCNs.

• We improve the modelling and the representations of body
joints, proposing a novel architecture that utilizes attention
mechanisms on body parts, i.e., arms, legs, and torso.

• We conduct extensive experiments and evaluation, demon-
strating the consistency and effectiveness of the proposed
methodology to explain bodily expressions of emotions
in two datasets (which are captured in different settings,
contexts, and cultures).

The remaining of the paper is organized as follows.
Section II gives an overview of literature on bodily expressed
emotion recognition, XAI, and GCNs. Section III explains
the proposed methodology’s components: ST-GCNs, spatial
attention mechanisms on body parts, and the explaining
method, namely, Class Activiation Maps (CAMs). Section
IV presents experimental evaluations and results on two
datasets, Green Stimuli [8], [9] and Kinematic Dataset of
Actors Expressing Emotions (KDAEE) datasets [10]. Finally,
Section V concludes the work and suggests future directions.

II. RELATED WORK

A. Body Joint-Based Emotion Recognition

There has been many studies that focused on using body
movements, posture, and gestures for the recognition of
emotion expressions. A survey by Noroozi et al. [11] listed
the usage of body joints as a major direction of modeling
the human body for automatic Emotion Recognition through
Bodily Expressions (ERBE). Traditionally, there have been
many approaches which rely on designing handcrafted fea-
tures to model human movement. For example, geometric
features and movement features related to velocity, accel-
eration, and motion protocols have been used in predictive
models for ERBE [12], [13].

Recently, deep learning models such as Long-Short-
Term Memory (LSTM) and Convolutional Neural Network
(CNNs) dominated the field of ERBE. For example, in
2019, Want et al. [14] proposed an end-to-end DNN model
based on LSTMs and attention mechanisms, using angles
and energy hand-crafted features extracted from a sequence
of body joints. The model applied two attention mecha-
nisms. The first one is spatial, on body parts, while the
second is temporal across time windows. The model showed
significant improvements when using attention mechanisms
for recognising pain-related experiences such as fear, anx-
iety, and avoidance. Nonetheless, LSTMs and CNNs are
not suitable for modelling the spatio-temporal dynamics of
body movements based on the skeleton, which is embedded
through graph data rather than grid-like data such as image
sequences. Recently, Yan et al. [6] proposed Spatio-Temporal
Graph Convolutional Networks (ST-GCNs) to overcome this
limitation, giving a significant performance in domains such
as action and activity recognition. In this study, we adopt
ST-GCNs for emotion recognition.

B. Explainable AI

Recently, there have been many interpretation techniques
for DNNs’ features. In a broader aspect, in XAI for DNNs,
there are two main approaches [15]: model-transparent and
model-agnostic approaches. Model transparent approaches,
such as Layer-wise Relevance Propagation (LPR) [16], Class
Activation Mapping (CAM) (and its variants) [17], and
saliency maps [18], [19] highlight the input features based
on models’ activation maps and weights. However, model
agnostic methods such as Local Interpretable Model Agnos-
tic Explanations (LIME) [20] approximate the relationship
between the input data and the decision but treat the model
as a black box. In our study, we use a model transparent
approach, namely, CAM.

Zhou et al. [17] proposed CAM by replacing the fully
connected layers in CNNs with a layer called Global Average
Pooling (GAP). GAP averages the feature maps of the last
convolutional layers and outputs them as a weighted vector.
A weighted sum of this vector is fed to the final softmax loss
layer. The score of the predicted class is projected back to the
previous convolutional layer to generate the CAMs. Hence,
the important regions can be highlighted using GAPs, giving
a localization map highlighting the important regions in the
input image for the classification process.

C. XAI for Bodily Expressed Emotion Recognition

In XAI for emotion recognition, most of the existing
studies focus on the explainability of facial expressions,
which covary with discrete emotions. To the best of our
knowledge, no studies tackle the challenging problem of
explaining DNNs’ features for bodily expressed emotions.
Recently, at the First International Workshop on Bodily
Expressed Emotion Understanding (BEEU), leading experts
in the field discussed the challenges and future directions of
ERBE research [21]. They mentioned the explainability and
interpretability of the developed models as a crucial direction
for ERBE.

Nonetheless, a major challenge in explaining bodily ex-
pression recognition is the lack of movement coding systems,
such as the one used for facial expressions FACS [1]. Hence,
the literature points to the fact that there is not a consistent
quantization of body movement and its characteristics and
relations to bodily expressed emotions [1], [5]. Few attempts
have been made, represented by adopting Laban Movement
Analysis (LMA) and Body Action Coding System (BACS)
[4]. These systems aim at building a mapping between
descriptors and movement characteristics such as joints’
positions and velocity [22]. Nonetheless, these methods have
a few drawbacks. For instance, a drawback for the LMA
system is its need for excessive attention for microanal-
ysis and special training for adopting Laban Framework.
Therefore, these challenges hamper their adaptation within
computational methods in Affective Computing.

D. Graph Convolutional Networks

Recently, Graph Neural Networks (GNNs) have been
proposed as models to overcome the challenges posed by



the fact that graphs do not have a spatial structure, and the
locality among their vertices is not preserved. GNNs are
powerful methods to model data generated via non-euclidean
domains as they capture their internal dependence and learn
efficient representations. GNNs have achieved great success
across many domains, including health-records [23].

Graph Convolutional Networks (GCNs) are a family of
GNNs inspired by the success of traditional CNNs. GCNs
generalize the convolution operation (the template match-
ing) of the CNNs into GNNs. There are two main types
of GCNs [23]. The first type of approaches is based on
spectral convolution, where graph convolution is performed
in the frequency domain. Spectral convolution utilizes the
eigenvalues and eigenvectors of the graph Laplace matrices,
a computationally expensive process. ST-GCNs follow the
second type, which is based on spatial convolution. The latter
approaches apply template matching on the graph vertexes
and their neighbours, which are extracted and normalized
based on manually designed rules.

III. METHODS

In this section, we explain the proposed methodology’s
components, namely, Spatio-Temporal Graph Convolutional
Networks (ST-GCNs) and spatial attention mechanisms
based on body parts. We also present the adaptation of Class
Activation Maps (CAMs), the explanation method.

A. Motivation

Perceptual studies in psychology suggest that there exist
general movement features which contribute to emotion
recognition. For example, De Meijer [5] categorized body
movements into the following classes: torso (stretching and
bowing), right and left arms (which can include opening
and closing), and gait movements characterized by the legs.
Motivated by this categorization, we employ ST-GCNs on
body joints’ sequences to capture the dynamics of skeletal
movement. ST-GCNs are suitable models to tackle this chal-
lenge. Additionally, they are enhanced by spatial attention
mechanisms on body parts to improve their representations
and facilitate the explainability of the computed features.

B. Body Skeleton Data and Graph

Recently, pose estimation methods have matured, resulting
in accurate estimation of human pose and localization of the
2D and 3D coordinates of body joints [24]. For Green Stimuli
Dataset [8], [9], we extract the sequence of body joints using
OpenPose [24], which offers an accurate real-time tracking
of 2D positions of body joints, and a confidence value for
the estimated positions. Hence, each skeleton is represented
with 18 body joints (as shown in Fig. 1b). KDAEE dataset
was captured using the MoCap system. The dataset provides
21 anatomic nodes (as shown in Fig. 1c), with x, y, and z
coordinates.

Subsequently, body motion can be represented with a
sequence of 2D or 3D coordinates of the body joints. Instead
of computing handcrafted features on the sequence of body
joints, we employ ST-GCNs [6], which is used to represent

(a) ST Graph (b) Green Skeleton (c) KDAEE Skeleton

Fig. 1: Graph construction in ST-GCNs. (a) The ST graph
consists of body joint (a vertex in the graph), spatial edges
(dark lines), and temporal edges (light green lines). (b) a
skeleton showing three subsets of the spatial configuration of
the graph partitioning strategy. (b) also shows the skeletons
of Green Stimuli datasets. (c) illustrates the partitioning of
body parts using a skeleton of the KDAEE dataset.

the dynamics of the human body embedded within joint
sequences. In this manner, ST-GCNs extract hierarchical
representations of skeleton sequences. As suggested in [6],
we construct undirected spatio-temporal graphs, consisting of
V vertices (joints) and E edges, G= (V,E). As shown in Fig.
1a, there are two types of edges in ST-GCN, spatial edges
that adhere to the natural connectivity of joints and temporal
edges that connect the same joints across time windows.

In the graph shown in Fig. 1a, each body joint (vertex)
has a three-dimensional vector, i.e. 2D joint positions and
their confidence or the 3D joint positions. A video clip
of a skeleton sequence can be represented with a tensor
as follows: X ∈ RC×T×V , where C is the data point of a
vertex (x, y, z or confidence), T is the number of frames
in a video sequence, and V is the total number of body
joints (e.g., 18 body joints). For each joint, we augmented
their relative positions (ri) with respect to the centre joint
of the skeleton (i.e., the central spine), in addition to the
2D and the 3D positions of the joints. The augmentation is
calculated as follows: ri = X [:, :, i]−X [:, :,c], where X [:, :,c]
indicates the position of the central joint. Hence, the joints’
coordinates and relative positions are concatenated, resulting
in 6D-vectors representing the body joints.

C. Spatio-Temporal GCNs

Given the Spatio-Temporal (ST) data defined above, ST
graph convolution is applied across multiple layers using a
predefined graph. GCNs aims at generalizing the convolution
operation to GNNs where input features are represented on
a spatial graph V . Specifically, in ST-GCNs, a feature map
at a frame t can be defined as follows: fin: V ∈ Rc, which
has a c-dimensional vector for each node in the graph, e.g.
6 in the input graph of our study. In the spatial dimension,
a graph convolution on a node (vi) is defined as follows [6]:

fout(vi) = ∑
v j∈Bi

1
Zi j

fin(v j).w(li(v j)) (1)



where Bi refers to the sampling area for the convolution
around vi, which is defined by the 1-distance neighbour nodes
(v j) of the target (root) node (vi), Zi j is a normalizing term
equal to the cardinality of the corresponding sampling subset,
fin is a feature map at a frame t, w is a learnable kernel
similar to the conventional convolutional operation, which
is a weighting function on the input vector. Finally, li is a
mapping function to assign a unique weighting function (w)
for each vertex, given the defined topology of the spatio-
temporal graph of the human skeleton.

A key step in GCNs is to define the sampling function Bi.
Note that the sampling function (Bi) varies for each node;
however, the number of weighting vectors (w) is fixed. li
maps the weight vectors for each vertex. Specifically, the
ST-GCNs proposed by Yan et al. [6] adopted a spatial config-
uration partitioning for mapping weights. In this partitioning,
the spatial localization of the human skeleton is utilized,
inspired by the fact that body motion occurs concentrically
and eccentrically. As illustrated in Fig. 1b, the partitioning
consists of three subsets: (1) a root node, (2) a centripetal
group, which contains the neighbouring nodes of the root
node that are closer to the gravity centre of the skeleton
than the root node, (3) centrifugal nodes which are further
from the gravity centre of the skeleton than the root node.

To apply the convolutional operation, ST-GCNs [6]
adopted a similar approach as in Kip and Welling [25], where
skeleton graph is represented by the adjacency matrix A and
an identity matrix I , hence, in a vectorized form, the equation
in (1) can be re-written as follows:

fout =
Kv

∑
k
Ak ⊙Mk(finWk) (2)

where Kv denotes the kernel size of the spatial dimension,
i.e. with the spatial configuration partitioning strategy, and
Kv is set to 3. Ak = D̂− 1

2 AD̂− 1
2 , Ak ∈RV×V is the adjacency

matrix which is defined according to the partitioning strategy
explained above, and D̂ii = ∑ j Ai j + Ii j. W ∈ RCout×Cin×1×1

is learnable matrix of 1×1 convolution (which corresponds
to the weighting vector in (1)). M ∈ RV×V is a learnable
matrix which indicates the importance of each vertex. ⊙
denotes the element-wise product between two matrices. For
the temporal convolution, an L × 1 convolutional layer is
applied to learn representational features on the adjacent
frames.

D. Spatial Attention

Body gestures and movements are usually performed by a
collection of joints on each of the main body parts, i.e., the
torso, arms, and legs. In our framework, following the work
of Song et al. [7] and Want et al. [14], we applied spatial
attention on body parts as follows:

fpart = fin(p)⊙ so f tmax(ReLU(pool(fin)W )Wp) (3)
fout =Concatenate({fp|p ∈ 1,2, . . . ,P}) (4)

where ⊙ indicates element-wise multiplication, pool() refers
to the temporal average pooling and a body parts’ joints
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Fig. 2: The architecture of the proposed framework, consist-
ing of seven spatio-temporal GCN layers, three layers for
spatial attention mechanisms, GAP, a classification layer.

pooling. W and Wp are learnable projection matrices where
W is shared among all body parts, while Wp is specific
for each body part. Focusing on those body parts helps
the model in learning patterns related to bodily expressions.
More importantly, attending to the movement of body parts
facilitates the explanation of body parts’ involvement in
expressing a certain emotion.

E. System Architecture and Training

Fig. 2 presents the topology of the proposed framework.
It consists of 7 spatio-temporal convolutional blocks. The
numbers of each block represent the number of input chan-
nels. Global Average Pooling (GAP) applies spatio-temporal
pooling. Before the GAP and prediction layers, note that
there is no average/mean spatial pooling over the joints
to preserve the skeleton topology. This property is later
utilized to compute joints’ activations and explain body parts’
movements in emotional expressions. We used Stochastic
Gradient Descent (SGD) with a momentum of 0.9, and the
optimization was run for 200 epochs. In our experimental
evaluations, the learning rate was set to 0.1 and divided by
10 at the 50th and 100th epochs. The batch size was set to
64.

F. Explanation Method: Class Activation Maps

In our work, Class Activation Maps (CAMs) use GAP
to highlight the discriminative body parts when inferring
a specific emotion given a joint sequence. In particular,
we can highlight the important regions using GAP. As
explained in subsection III-B, the dimensionality of a given
sequence, fc(t,v), at the final convolutional layer (i.e., the
layer before GAP) is fc(t,v) ∈ RC×T×V . GAP is performed
across T and V , i.e., the spatial and temporal dimensions,
preserving the number of feature channels: Fc = ∑t,v fc(t,v).
The resulting features (Fc ∈RC) have a C-dimensional vector.
This vector is used in the fully connected layer to produce the
desired output (i.e., predictions of emotions at hand), using
a weighted sum.

Subsequently, the input to the softmax layer (the classifi-
cation layer) for an emotion Se is ∑c we

cFc, where we
c is the

emotion score which is known as the weight score for the
corresponding emotion e and the activation map c. Hence,
the emotion score is plugged into the feature map at the final
convolutional layer to obtain a discriminative localization



Fig. 3: Illustrations of body parts’ activations in emotional
expressions. Note the high activation when the body gestures
are expressive, demonstrating the ability of the model to
capture the joints’ movements.

map as follows:

Me(t,v) = ∑
c

we
c fc(t,v) (5)

where Me(t,v) is the localization map, indicating the im-
portance of the activations directly for the spatio-temporal
grid, i.e., the corresponding body joint (v) at the time
window t. Hence, these maps are a weighted linear sum of
the corresponding body joints’ activation maps that show
the discriminative joints leading to the classification of the
emotion in the body joints’ sequence.

Figure 3 shows activation maps for body joints in a
sequence. Note that the proposed method, utilizing CAM,
highlights the activated body joints in terms of body parts (a
darker shade of red means a higher activation). In our study,
thanks to the employment of body attention mechanisms,
we were able to obtain consistent CAMs for each body
part. Specifically, our explanation method directly uses the
localization maps (Me(t,v)) to calculated body parts’ acti-
vation, linking them to emotion expression and recognition.
Mathematically, we perform the following average pooling
on body parts:

Pm
i =

1
NvPi

∑
t,v∈vPi

Me(t,v) (6)

where Pm
i is the activation value for the body part, Pi. Pi

includes body joints of the corresponding body part (v ∈ vPi ).
NvPi

is equal to the number of body joints in the body part Pi.
Thus, we pool the activations obtained through the equation
(5), over the joints’ sequence, providing a single value that
represents the activation.

IV. EVALUATIONS

We present comprehensive experimental evaluations on the
proposed approach and its explainability on two datasets,
namely, Kinematic Dataset of Actors Expressing Emotions
(KDAEE) [10] and Green Stimuli (GreSti) Dataset [8], [9].

1) Green Stimuli Dataset: Green Stimuli dataset is a
bodily expression rich dataset collected in a study to examine
bodily expressions, and human perception of emotion display
[8], [9]. It consists of 871 video clips, where each video has a
duration of 2 seconds. It was collected using RGB cameras. It
is a gender-balanced dataset with 17 males and 17 females.
Subjects were coached to express affective expressions in
a naturalistic way. Actors mainly have a European cultural

Dataset Method A D F H N Sa Su Folds Average

KADEE Baseline 67.5 56.5 64.9 70.7 82.9 53.4 50.2 62.6
SA 70.1 57.8 68.4 74.5 82.9 55.0 52.7 65.0

GreSti Baseline 65.6 58.1 63.5 67.8 77.4 73.5 63.8 67.5
SA 63.1 55.6 72.7 63.3 81.8 79.8 64.5 69.2
I3D [27] 65.0 61.1 57.9 78.9 71.4 84.2 63.2 68.9

TABLE I: Ablation study on the performance (in terms of
accuracy %) of the proposed method across two datasets’
emotion types, with and without Spatial Attention (SA).
Labels are referred to as follows: Anger (A), Disgust (D),
Fear (F), Happiness (H), Neutral (N), Sadness (Sa), and
Surprise (Su).

background. They performed bodily expressions of emotions
which were varied as to their subjective characteristics. In
particular, subjects expressed emotional body movements in
six discrete basic Ekmanian emotions [26]: anger, disgust,
fear, happiness, sadness, and surprise. In addition, sub-
jects performed neutral body expressions such as coughing,
walking, standing, or pulling the nose. The faces of the
subjects were blurred to study emotions independent of facial
expressions. Currently, Green Stimuli dataset is not publicly
available due to the sensitivity of the collected data and
the restrictive data sharing policies in the European Union.
However, we intend to release portions of the data, such as
body joints, for the research community.

2) KDAEE: KDAEE is a kinematic dataset which has a
total of 1402 recordings, gathered using motion capture tech-
nology. It is the largest kinematic dataset of bodily expressed
emotions, capturing the movement of the whole body. The
dataset was created to study discrete emotions (i.e., anger,
disgust, happiness, fear, sad, and surprise) and neutral states,
from bodily cues. The dataset collection was performed by
22 subjects (50% females). Actors have an Asian cultural
background. For the aim of the data collection, subjects
completed two types of movement: spontaneous (based on
actors’ understanding of emotion expression) and scenario-
based movements (using predefined scenarios created by
the dataset developers). Actors performed the movements
successively to display the discrete emotions. The dataset
provides only raw kinematic data, consisting of the positions
and rotation of the targeted 72 anatomical nodes. In our
study, we used the positions of the main 21 anatomical nodes,
as shown in Fig. 1c.

3) Evaluation Protocols: Both datasets were divided into
10-folds for cross validation. In each fold, one part of the
data (90%) is used for training, and the remaining part is
used for testing. The reported results in this section are the
average accuracies of the ten folds.

A. Ablation Study

We introduce an ablation study to demonstrate the effec-
tiveness of the proposed framework and the employed spatial
attention mechanisms. In particular, we provide the results
of the proposed framework using the following components:
• A comparison with I3D [27], a state-of-the-art 3D-CNN

model for video classification. In this comparison, we
provide results only for Green Stimuli, which contains
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Fig. 4: The t-SNE embeddings of the two datasets features
which are obtained from the seventh convolutional layer.
Note that clusters are well structured, where colours rep-
resent body parts. Blue, green, and orange colours represent
arms, legs, and torso, respectively.

RGB video recordings. Nonetheless, the developers of
KDAEE provide only raw kinematic data obtained from
the MoCap system. Hence, for KDAEE, we only provide
the classification results based on skeleton data.

• A baseline framework which does not use spatial attention
mechanisms.

• The proposed framework, which uses spatial attention
mechanisms, utilizing the joints of specific body parts as
explained in section III-D.
Table I presents the performance on the two datasets. As

shown in the table, the framework’s performance (in terms
of accuracy) benefited significantly from the notion of spatial
attention. We notice that attention mechanisms based on body
parts enhanced the system performance by at least 1.7% in
both datasets. This improvement is also present among all
emotion types in the KDAEE dataset and most of the classes
of the Green Stimuli dataset. More importantly, the spatial
attention gives the proposed method a stronger representation
of body parts since our analysis focuses on body parts to
explain bodily movements in emotional expressions.

Finally, previous studies have pointed out that skeleton-
based models (e.g., GCNs) can be inferior to those models
based on RGB-data for tasks such as activity and action
recognition [6]. Nonetheless, the results of Green Stimuli
in Table I show that the proposed framework (based on
skeleton data) obtains comparable accuracies to the ones
obtained by RGB-images based I3D model. Our approach
slightly outperformed I3D results by 0.3%. Moreover, an
essential advantage of the employed approach (i.e., GCNs)
is the natural correspondence of the body parts’ joints and
their movement over time with the GCNs nodes. This is an
important advantage over methods such as I3D, where RGB
image sequences are employed. In the latter case, the tracking
of the body joints is challenging in terms of explainability.

B. Explainability Study

In section III-F, we presented the adaptation of Class
Activation Maps (CAMs) as an explanation method for the
proposed approach. An important question is whether the
explanations of this method are correct. A simple way to
verify the explanation is to use ground truths of the impor-
tance of the body parts in expressing emotions. Nonetheless,
such ground truths are not provided in the selected datasets

since the body parts’ movements are not annotated regarding
their importance in expressing emotions. Hooker et al. [28]
suggested alternative procedures, where important features
(nodes in the case of GCNs) are deleted while keeping the
rest of the features. In case the explanation method identifies
the discriminative features correctly, deleting those features
causes a decline in the performance of the identification task.
In our work, we followed this strategy, performing systematic
body parts’ occlusion. We replace parts’ joints with Gaussian
noise and subsequently re-run the classification task (evalu-
ation without retraining) for assessment.

As explained in Sections III and III-D, motivated by
studies coming from the field of psychology [1], [2], [5], we
decided to categorize body movements into the following
parts: torso, right and left arms, and legs for capturing
gait movements. Combinations of the body parts are not
considered since our study focuses on explaining the main
body parts independently. In addition, particular movements
such as arms’ opening or closing were not annotated in the
video clips of both datasets. Hence, we provide a high-level
explanation for the focus of the approach when inferring
emotions, aiming to answer the research question: which
body parts are influential in the decision of computational
models (i.e., GCNs) for emotion recognition. Hence, our
evaluations present the study findings as follows:
• Employing CAMs to calculate the contribution of body

parts’ movement in emotion recognition.
• Verifying these findings in terms of body parts’ occlusion.

1) Visualization of Joints Embeddings: Prior to delving
into the analytical results, we present qualitative results,
demonstrating how the proposed topology produces embed-
dings of joints aware of body parts. Fig. 4 presents the
embeddings of the seventh convolutional layer. We extracted
the features from the whole sequences for each body joint
and each sample. We used t-SNE (dimensionality reduction
and visualization tool) to visualize the resulting embeddings.
The figure clearly shows that the embeddings are clustered
into three main classes, representing the three main body
parts, namely, arms, legs, and torso. Interestingly, our net-
works were not trained explicitly to cluster those body parts;
however, the employed body parts attention mechanisms
enhanced the performance of the proposed method and
improved the categorization of body parts’ embeddings.

2) Body Parts’ Contributions: Fig. 5 presents the distri-
butions of body parts’ activations for each emotion type.
For each video, three activation values for arms, legs, and
torso joints are calculated using CAMs as described in
Section III-F. The distributions shown in bar plots report
the average activations (bars) and standard deviations (an-
tennas), across emotions’ recordings (video clips). Firstly,
as shown in the figure, arms’ activations are the highest
among most classes, with exceptions in fear and disgust
(in Green Stimuli) and fear and neutral state (in KDAEE).
Secondly, the contributions of legs’ joints are second in
four classes of Green Stimuli (namely, disgust, happiness,
neutral state, and surprise), and four classes of KDAEE
datasets (namely, anger, disgust, happiness, and sadness).
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Fig. 5: Bar plots illustrate body parts’ contribution given body parts’ activations in emotion classification of body joints’
sequences. The letter ”o” marks the two distributions that do not differ significantly (p > 0.05).

Green Stimuli KDAEE

Emotions None L-A R-A L-L R-L R&L-A R&L-L T None L-A R-A L-L R-L R&L-A R&L-L T

Anger 63.1 59.3 49.3 58.5 55.0 36.3 49.7 57.4 70.1 44.4 35.5 48.8 57.7 4.7 32.8 50.4
Disgust 55.6 50.9 51.6 53.2 54.1 35.3 45.5 40.0 57.8 40.3 36.3 37.0 44.6 23.6 30.6 42.3
Fear 72.7 63.0 56.3 60.6 62.0 41.3 36.3 60.6 68.4 46.0 51.1 42.7 10.1 41.2 5.3 44.6
Happy 63.3 49.7 29.7 57.6 53.7 4.7 48.2 58.4 74.5 57.3 35.1 51.9 44.1 19.8 27.9 52.5
Neutral 81.8 66.4 59.5 79.9 79.5 38.5 72.5 73.1 82.9 46.7 58.3 61.5 60.8 21.8 45.4 60.3
Sad 79.8 62.7 60.4 72.6 74.7 35.2 66.7 58.9 55.0 36.1 34.9 37.2 42 28.5 33.1 42.7
Surprise 64.5 48.1 33.9 57.7 60.2 10.5 49.2 51.2 52.7 26.7 29.3 35.6 36.1 20.8 26.6 28.0

Avg-Acc 69.2 58.2 50.6 63.5 63.0 32.5 54.1 57.9 65.0 41.4 38.7 43.2 43.4 25.4 30.2 45.0

TABLE II: The classification accuracies of the proposed method when occlusion is applied on the following body parts: Left
Arm (L-A), Right-Arm (R-A), Left Leg (L-L), Right-Leg (R-L), Torso (T). The results are reported for the two datasets,
namely, KADEE and Green Stimuli, and for all emotion types.

Interestingly, the legs’ joints are leading the contributions in
the recognition of fear in both KDAEE and Green Stimuli
datasets. Thirdly, torso joints are less important than arms
and legs joints, leading the contributions only in recognizing
disgust (in Green Stimuli). Besides, they are in the second
place to recognize anger and sadness (in Green Stimuli),
and surprise and neutral state (in KDAEE). The importance
of arms’ movements (which include hands’ movements) in
the expression and perception of emotions is in alignment
with findings from studies in the field of psychology, which
suggest that they are the most expressive body parts [1], [5].

Additionally, Welch’s t-test was performed to check the
similarities between the distributions of body parts’ activa-
tions. If t-tests’ p-value is greater than 0.05, the distributions
were considered not significantly different from each other.
In Fig. 5, the distributions that do not differ significantly are
marked with the letter ”o”. In Green Stimuli, our evaluations
show that the distributions of body parts’ activations are sig-
nificantly different from each other in the following classes:
anger, neutral state, and surprise. However, in the cases of
disgust, sadness, and happiness, the distributions of legs’ and
torso’s contributions are not significantly different. In the
case of fear, it was observed that the distributions of arms’
and legs’ activations do not differ significantly. In KDAEE,
we notice that the distributions of body parts’ activations are
significantly different, except in neutral expressions where
the activations of arms and torso do not differ significantly.

It is important to note that the difference between the
contribution of the body parts among the same emotions
across the two detests to be expected. The two datasets
were captured in two different cultures, where Green Stim-
uli and KDAEE subjects come from European and Asian
cultural backgrounds, respectively. Additionally, there is not
a direct correspondence between movement and affective
expressions. The relationship between these components is
not transcultural and transcontextual. Bodily expressions can
be gender and age-specific, as well as idiocentric [5].

3) Verification of Body Parts’ Explanations: In this anal-
ysis, we aim at verifying the explanations mentioned above
provided by the explanation approach for each body part
and emotion. To do so, we control whether the occlusion of
a body part that is considered discriminative will affect the
classification performance or not.

Table II presents a complete picture of the results fol-
lowing the performed occlusion evaluations. On average, for
both datasets, we observe that the occlusion of the arms de-
creases the classification performance the most, followed by
legs and torso, respectively. The results show that occluding
body parts, which were considered the most discriminative
by CAMs, rapidly decreases the performance. On body part
and class levels, the main observations are as follows:
• The occlusion of left or right arms has a different impact,

where the right arm is more discriminative in recogni-
tion of most emotions than the left arm. A study by



Poyo Solanas et al. [9] found that limbs’ movements
and symmetry features contribute differently in emotion
perception.

• The occlusion of the left and right legs does not differ
significantly compared to the left and right arms.

• Neutral state is the least affected expression when remov-
ing body torso and legs for both datasets. It is also the
most accurately recognized class. A potential explanation
is that these body parts are less activated in neutral
expressions, and removing them decreases the accuracy
less than emotional expressions.

• For fear, the occlusion of leg joints affects the recognition
rate the most. The legs are the body part activated the most
in the expressions of fear (as shown in Fig. 5).

• Removing any body part which is considered the most
discriminative by the explanation method (and is signifi-
cantly different from other parts) decreases the accuracy
more than removing other parts. There are two exceptions:
the occlusion of the torso for disgust (in Green Stimuli)
and of the legs in the neutral state (in KDAEE). The reason
behind these exceptions is that the body parts’ activations
do not significantly differ from each other completely (p>
0.05, as introduced in the previous Subsection); hence, the
occlusion of one body part has a low impact.

This analysis demonstrates the applicability of the employed
methods (the topology and the adapted explanation methods)
to explain the computed features.

V. CONCLUSIONS

This study tackles a major challenge of the explainability
of deep neural networks in bodily expressed emotion recog-
nition using skeleton joints. It proposes a novel approach
based on state-of-the-art methods, namely, Graph Convolu-
tional Networks and spatial attention mechanisms. Our re-
search provides comprehensive evaluations of the framework,
demonstrating its robustness and effectiveness to explain
body movements in emotion recognition. Our findings show
that hands and arm movements are the most significant
for emotion recognition. Future work should benefit from
annotated body movements in expressing emotions to check
if the proposed method agrees with such annotations.
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